AQA Maths Decision 1 Mark Scheme Pack 2006-2015

Version 1.0: 0706

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
A	mark is dependent on M or m marks and	is for accuracy	Į.				
В	mark is independent of M or m marks ar	nd is for method	d and accuracy				
Е	mark is for explanation						
$\sqrt{\text{or ft or F}}$	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct x marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01

Q	Solution	Marks	Total	Comments
1(a)		M1 A1	2	
(b)	Initial A3, B4, C2, E5	B1		Starting from D,1
	D-4+B-2+C	M1		Either
	$\frac{\underline{\text{No}}}{D-5+E-3+A-1}$	A1		
	Yes	AI		
	Complete	D1	4	
	A1, B4, C2, D5, E3 Total	B1	6	Only solution
(2)(a)	18 2 2 18 12 7 26 19 16 24 24 16 24	M1		Shuttle SCA 1 st Pass
	<u>2</u> 18 12 7 26 19 16 24 2 12 18 7 26 19 16 24	A1		1 Pass
	2 7 12 18 26 19 16 24	A1		3 rd Pass
	2 18 12 7 26 19 16 24 2 12 18 7 26 19 16 24 2 7 12 18 26 19 16 24 2 7 12 18 26 19 16 24 2 7 12 18 19 26 16 24 2 7 12 16 18 19 26 24 2 7 12 16 18 19 26 24	A1		4 th Pass
	2 7 12 16 18 19 24 26	A1	5	All correct
				All collect
(b)	Pass C S	D1		SC All Comment D1
	$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix}$	B1 B1		SC All C correct B1 or all S correct B1
	3 3 2	B1	3	or 6,4 scores B1
	Tr.4-1		0	
	Total		8	

Q	Solution	Marks	Total	Comments
3(a)(i)	<i>AB</i> 5	M1		SCA
	<i>BD</i> 3	B1		9 edges
	DC 1	A1		DC 3 rd
	DE 4	A1		DE 4 th
	DF 5			
	FG 6			
	GI 10			
	GH 11	B1	5	All correct
	<i>HJ</i> 13			
(ii)	58	В1	1	
(b)(i)	y 5	M1		SCA
	No.	M1		3 values at D
	8 T 21,4 8	A1		All correct at D
	10 8 20 1	M1		3 values at G
	100	A1	6	All correct
		B1	6	42 at J – or in script
	(°6) F23: /ac/			
(::)		N/1		Alla (CC < 12 D1
(ii)	28 + x < 42 O.E.	M1 A1	2	Allow \leq SC $x \leq 13$ B1
	x < 14 ISW	AI		
	Total		14	
4(a)	A, C, D, F odd nodes	B1		May be implied
	AC + DF = 18 + 22 = 40	M1		
	AD + CF = 32 + 30 = 62	A2,1,0		
	AF + CD = 12 + 30 = 42			
	Repeat $AC + DF$	B1		May be implied
	Total $164 + 40 = 204$	B1	6	
(b)	Start/finish A/C			
	∴ Repeat DF	B1		Or subtract AC
	Total 164 + 22 = 186	B1	2	or subtract the
	1011101122 100	D1	<i>≟</i>	
(c)(i)	Shortest pair AF	В1		
(6)(1)	Distance = $164 + 12 = 176$	B1	2	
	Distance 107 12 = 170	Di	4	
(ii)	Start/Finish at C/D	В1	1	May be listed in a route
(11)	Total	<i>D</i> 1	11	may be noted in a route
	1 Utai		11	

Q Q	Solution	Marks	Total	Comments
5(a)(i)	7	B1	1	
		7.4		
(ii)	7	B1	1	
(b)(i)	Missing values			
	(PF 3) any 2 values correct	B1		
	$\left(\text{OT } 3\frac{1}{4}\right)$ other 2 values correct	B1	2	
(ii)	FTPOMF			
(11)	1	B1	1	
	$=8\frac{1}{4}$ ISW			
(iii)	FTMPOF	M1		Tour
		M1		Visits all vertices
		A1		Correct order
	= 7	B1	4	
(iv)	Delete F			
	P	M1		MST – letters or numbers
		A1		3 edges
	1/	A1		Correct
	M			
	114			
	132			
	T			
	Add $1\frac{1}{4} + 2$	m1		Adding 2 edges from F
	$=6\frac{3}{1}$			2
	<u> </u>	A1	5	SC $6\frac{3}{4}$ with no working $\frac{2}{5}$
	Total		14	

Q Q	Solution	Marks	Total	Comments
6(a)	$10 \le x \le 80$	B1		Strict inequalities –1 (or using p, c)
	$5 \le y \le 40$	B1		
	$x + y \le 100$	D1		
	$20x + 60y \le 3000$ OE	B1 B1		
	(maximise)(P =) 2x + y	B1	5	May be seen in (b) or (c)
(b)	30	B1 M1A1 M1A1		For "x lines" and "y lines" For each other line M1–ve gradient $(0,50)$ M1–ve gradient $(100,0)$
	20-	B1 B1	7	Feasible region correct to within 1 square Objective line
(c)	$0 = \frac{1}{20} = \frac{1}{40} = \frac{1}{60}$ Max at (80,20) $P = £180$	M1 A1	2	Considering an extreme point in their region
(d)	P = x + 4y Max at (30, 40) P = £190	M1 A1	2	Using (30,40) (± square)
	Total	711	16	
7(a)(i)	m-1	B1	1	
(ii)	$n \ge m-1$	B2	2	B1 for $>$ or $(n > m)$ OE
(b)	m(=n)	B1	1	
(c)		M1 A1	2	m = 6 and eulerian All correct
	Total		6	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method							
m or dM	mark is dependent on one or more M marks and is for method							
A	mark is dependent on M or m marks and	is for accuracy	,					
В	mark is independent of M or m marks an	d is for method	I and accuracy					
Е	mark is for explanation							
$\sqrt{\text{or ft or F}}$	follow through from previous							
	incorrect result	MC	mis-copy					
CAO	correct answer only	MR	mis-read					
CSO	correct solution only	correct solution only RA required accuracy						
AWFW	anything which falls within	FW	further work					
AWRT	anything which rounds to	ISW	ignore subsequent work					
ACF	any correct form	FIW	from incorrect work					
AG	answer given	BOD	given benefit of doubt					
SC	special case	WR	work replaced by candidate					
OE	or equivalent	FB	formulae book					
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme					
–x EE	deduct x marks for each error	G	graph					
NMS	no method shown	c	candidate					
PI	possibly implied	sf	significant figure(s)					
SCA	substantially correct approach	dp	decimal place(s)					

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Jan 07

MD01

Q	Solution	Marks	Total	Comments
1(a)	<i>AB</i> 5.5	B1		8 edges
	<i>BC</i> 8	M1		SCA
	<i>AI</i> 9	A1		AI 3rd
	<i>BD</i> 13	A1		BD 4th
	DE 9			
	<i>DG</i> 11			
	<i>DF</i> , <i>EF</i> , <i>GF</i> 12			
	<i>IH</i> 16.5	A1	5	All correct
(b)	84	B1	1	
(c)		M1 B1 A1	3	Minimum spanning tree 8 edges All correct including labelling (or including <i>DF</i> or <i>GF</i> instead of <i>EF</i>)
(d)	2	B1	1	
	Total		10	

MD01 (cont Q	Solution	Marks	Total	Comments
	Solution	IVIALKS	าบเลา	Comments
2(a)	B	M1		Bipartite graph
	D U	A1	2	All correct
(h)	Short with D (on S)	D1		
(b)	Start with D (or S) D-U+E-S	B1 M1		For attempt at any path
	or	1,11		To attempt at any paor
	D-V+A-R+B-T+C -V+D-U+E-S	A1		
	Match: <i>AV</i> , <i>BR</i> , <i>CT</i> , <i>DU</i> , <i>ES</i>			
	or AR, BT, CV, DU, ES	B1	4	Must be 5 pairs
	Total		6	
3(a)	A B C D A 8 13 17 26	M1		4 numbers (either part)
	= 64	A1	2	
(b)	A D C B A 11 18 9 14			
	= 52	A1	1	
(c)	A C B D A	M1		Tour
	6 9 25 26	M1		Visits every vertex
		A1	4	Correct order
	= 66}	B1	4	
	Alternative if matrix used: M1 3 numbers all different rows M1 4 th number and columns A1 correct numbers B1 66			
(d)	52 (their lowest of (a), (b), (c))	B1F	1	Allow "part (b)"
	Total		8	

MIDUI (COIII)	<i>,</i>	G 1		7.5	7D 1 3	
Q		Solution		Mark	s Total	Comments
4(a)	Comparis	ons	Swaps 5 3 2 1 0	B1B1 B1B1 B1 B1		Other 3 comparisons Other 3 swaps. Ignore 6 th pass
(b)	21 21			B1 B1	2	
			To	tal	8	
5(a)(i) (ii)	(A) 2 (A) 6	(B) 8	C D 0 0 2 3 4 6 6	M1 A1 A1 A1 A1 A1	3	SCA: as far as $D = 3$ For 4 All correct SCA: as far as $D = 8$ For 12
(b)	Find LCM			B1	1	Allow lowest common denominator
(c)	600		То	B1	1 8	

Q	Solution	Marks	Total	Comments
6(a)	$1000x + 500y \le 9000$	B1	1	
	$(2x + y \le 18)$			
<i>a</i> >	. 6 5			
(b)	$x \ge 2, y \ge 5$	B1		−1 for strict inequalities
	$y \ge 2x$ $y \le 3x$	B1 B1	3	-1 for 'w's and 'l's
(c)	<i>y</i> ± 5 <i>x</i>	Di	3	
	20-			
	18-	B1		x = 2, y = 5
		B1		2x + y = 18
	15-	Di		$2\lambda + y - 10$
		M1		Line $y = mx$
		A1		– 2
	10-	711		y = 2x
		A1		y = 3x
		B1	6	Feasible region
	5	Di	O	reasion region
	0 2 5 9 10 x			
(d)	Considering an extreme point on their f.r.	M1		Extreme point - vertex
(u)	x = 4.5	A1		Extreme point - vertex
	y = 9	A1	3	
	Total		13	

MD01 (cont) Q	Solution	Marks	Total	Comments
7(a)(i)	C			
	0	3.61		ag.
,	130	M1		SCA
	1	M1		4 values at <i>I</i>
	75			
	/300 295	M1		2 values at M
	S 360 295 286 [215]	1411		
				2 values at O
	235	M1		2 values at O
	235			
	M ₃₃₅	A1		All correct
	315			
	313	B1	6	465 at <i>O</i>
		DI	O	
	195			
	485			
	395			
(ii)	CASINO	B1	1	Or ONISAC
a > a	4 16 255	D.1		
(b)(i)	$A \rightarrow M = 255$	B1	1	
(ii)	Odds (C, A, S, M)	M1		PI
(11)		1711		
	CA + SM = 270			
	CS + AM = 390			(4.55)
i '	CM + AS = 390	A3		(-1 EE)
ļ				
	Min 2280 + 270 = 2550	M1 A1	6	2280 + their best pairing SC 2/6 for answer 2550 with no working

D01 (cont) Q	Solution	Marks	Total	Comments
8(a)(i)	2	B1		
		B1	2	OE
(ii)	3	B1 B1	2	OE
	X			
(iii)	3	B1		
		В1	2	OE SC 4
				OE
				B1(must have number and diagram)
(b)(i)	n is odd	B1	1	
(ii)	3 (only)	B1	1	
	Total		8	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method										
m or dM	mark is dependent on one or more M marks and is for method										
A	mark is dependent on M or m marks and is for accuracy										
В	mark is independent of M or m marks ar	mark is independent of M or m marks and is for method and accuracy									
E	mark is for explanation										
or ft or F	follow through from previous										
	incorrect result	MC	mis-copy								
CAO	correct answer only	MR	mis-read								
CSO	correct solution only	RA	required accuracy								
AWFW	anything which falls within	FW	further work								
AWRT	anything which rounds to	ISW	ignore subsequent work								
ACF	any correct form	FIW	from incorrect work								
AG	answer given	BOD	given benefit of doubt								
SC	special case	WR	work replaced by candidate								
OE	or equivalent	FB	formulae book								
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme								
–x EE	deduct x marks for each error	G	graph								
NMS	no method shown	c	candidate								
PI	possibly implied	sf	significant figure(s)								
SCA	substantially correct approach	dp	decimal place(s)								

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

June 07

MD01

Q Q	Solution	Marks	Total	Comments
1(a)	B 2 2 3 3 5 5 5 5 6 6	M1 A1	2	
(b)	D can only do 4	E1	1	Cannot be matched to task
(c)	A-2+E-6+C-5 $D-4+F-5+C-3+B-1$	M1A1 M1A1 A1		Starting with A , D , 5 , 1 First pass Second pass All Correct Alt:1 $A-4+F-5$ D-4+A-2+E-6+C-3+B-1
	Match A2, B1, C3, D4, E6, F5	B1	6	Alt: 2 $D-4+F-5$ A-2+E-6+C-3+B-1
	Total	DI	9	A-2+E-0+C-3+B-1
2(a)	28 22 20 17 14 11 6 5 14 28 11 22	M1		SCA
	6 20 5 17 14 11 6 5 28 22 20 17 6 14 20 28	M1 A1		4 sublists correct 1 st pass
	5 11 17 22 6 5 14 11 20 17 28 22	M1		2 sublists
	5 6 11 14 17 20 22 28	A1	5	All correct
(b)(i)	4	В1		
(ii)	4	В1	2	
(c)	28	B1	1	
	Total		8	

01 (cont)		14°		N/1	T-4-1		C
Q 2(-)(i)	So	lution		Marks	Total		Comments
3(a)(i)	A.	15	B 15	10	25 C	15	40 D
	32		12		12		12
	1911		71				
	12 E	20	32 F	q	37	G 20	
	E		[27]		[36]		# [52] :56
	20		20		20		20
	(32)	14	47	-20		15	72
	I		46 1		K	56	L [71]
				M1 A1 M1 M1		SCA Correct at F 2 values at G 2 values at J	
	71			M1 A1 B1	7	2 values at <i>H</i> All correct	
(a)(i)	OR Working back from 35 at G 47 at C 44 at F 49 at I 56 at B 64 at E 71 at A						
(ii)	ABFGKL			B1	1		
(b)	ADL gives 62			M1 A1		OE Either co	nsidering routes ADI or A
	AIL gives 69 ∴ A to D			A1 A1	3	CSO	nsidering routes ADL or A
			Total		11	1	

Q	Solution	Marks	Total	Comments
4(a)(i)	SD 12	M1		Prim's (first 4 edges, allow 1 slip)
	SC 13			
	<i>SA</i> 14	B1		12 edges
	<i>SB</i> 16			
	DH 75			th
	HG 23	A1		HG 6 th
	<i>GF</i> 22			
	FE 24	A 1		EI 9 th
	EI 81 IJ 12	A1		E1 9"
	IJ 12 GK 83			
	KL 16	B1	5	All correct
	KL = 10	DI	3	All collect
(ii)	391	B1	1	
()	3,1	21	-	
(iii)	.5	M1		MST (10 + edges)
(111)		1.11		(10 cages)
	16 / 10	A1		12 edges
	no Co			
	1	A1	3	All correct
	1			
	E F G			
	• • • • • • • • • • • • • • • • • • •			
	1.			
(:)	GF 7 th (22)	B1		
(iv)	GF / (22)		2	
	HG 8 th (23)	B1	2	
(b)	Odd vertices (E, H, J, K)	E1		PI
	EH + JK = 69 + 131 = (200)	M1		2 correct sets of pairings
	EJ + HK = 93 + 106 = (199)	A3,2,		r
	EK + JH = 129 + 142 = (271)	1,0		
	Repeat $EJ + HK$	-,~		
	Total $1135 + 199 = 1334$	B1	6	
	Total		17	

MD01 (cont)				
Q	Solution	Marks	Total	Comments
5(a)	$5x + 10y \le 1500 \text{ (balloons)}$			
	$\Rightarrow x + 2y \le 300$	E1		
	$32x + 8y \le 4000 \text{ (sweets)}$	E1		
	$\Rightarrow 4x + y \le 500$			
	$x \ge 50, y \ge 50$, at least 50 of each	E1		
	$x + y \ge 140$, at least 140 in total	E1	4	
(b)(i)				
	200			
		(
		\		
		1		
	140	1		
		1		
	100-	A		
	FI	5	1	
			1	
		1		
	40	11		
	OL	1	1	
			1	
	0 40	100	140	200 x
		3.00	2.40	25034
		l I	İ	1
		B1		x = 50, y = 50
		B1		x + y = 140
		M1		Negative gradient (either)
		A1		4x + y = 500
		A1		x + 2y = 300 Feasible region
		B1 M1		Objective line drawn
		A1	8	Objective line drawn
		AI	O	
(ii)	Maximum(100,100)	M1		Considering extreme point on their region
	=£200	A1	2	point on their region
			_	
(iii)	Minimum (90,50)	M1		Considering extreme minimum point on
	,			their region
	=£132	A1	2	
	Total		16	

Q	Solution	Marks	Total	Comments
6(a)(i)	$G \to P \to A \to N \to R \to G$	M1		Tour
	65 115 155 125 160	M1 A1		Visits all places Correct order
	Total = 620	B1	4	Correct order
(ii)	P 115 A	M1		SCA (MST + extra edge(s))
	155	m1		MST
		A1		
	R 125 N			
	65 160 R	m1		2 edges from G
	LB = 395 + 225 = 620	A1	5	
(iii)	T = 620	E1F		Their (a)(ii) $\leq T \leq$ their (a)(i) where (a)(i) \geq (a)(ii)
(b)(i)	92	В1	1	
(ii)	87	B1	1	
(iii)	6	B1	1	
(iv)	n!	В1	1	
	Total		14	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX

Key to mark scheme and abbreviations used in marking

M	mark is for method										
m or dM	mark is dependent on one or more M marks and is for method										
A	mark is dependent on M or m marks and is for accuracy										
В	mark is independent of M or m marks and is for method and accuracy										
Е	mark is for explanation										
$\sqrt{\text{or ft or F}}$	follow through from previous										
	incorrect result	MC	mis-copy								
CAO	correct answer only	MR	mis-read								
CSO	correct solution only	RA	required accuracy								
AWFW	anything which falls within	FW	further work								
AWRT	anything which rounds to	ISW	ignore subsequent work								
ACF	any correct form	FIW	from incorrect work								
AG	answer given	BOD	given benefit of doubt								
SC	special case	WR	work replaced by candidate								
OE	or equivalent	FB	formulae book								
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme								
–x EE	deduct x marks for each error G graph										
NMS	no method shown										
PI	possibly implied	sf	significant figure(s)								
SCA	substantially correct approach	dp	decimal place(s)								

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01

MD01		·		
Q	Solution	Marks	Total	Comments
1(a)	Solution A B K C D M N	Marks M1 A1	2	Bipartite graph All correct
(b)	D-M $(+)$ $E-K$	M1 A1		Attempt at path $D - M +$
	Match: AN, BJ, CL, DM, EK	B1	3	SC: $K - E + M - D$ B1
2()	Total		5	
2(a)	$ \begin{array}{c} y \\ 40 \\ 30 \\ 20 \\ 10 \\ 20 \\ 30 \\ x \end{array} $	B1 B1 B1 B1	5	$y = 5, x = 4$ $x + y = 30$ $2x + y = 40$ $y = \frac{1}{2}x$ feasible region CAO
(b)(i)	Max at $(16, 8) = 56$	M1	2	Extreme point within $\frac{1}{2}$ square of their region
(ii)	Max at $(4, 26) = 82$	M1 A1	2	Extreme point within $\frac{1}{2}$ square of their region
	Total		9	

ID01 (cont) Q	Solution	Marks	Total		Comments
3(a)	DF 1.2	B1	10001	9 edges	
` '	<i>IH</i> 1.8	M1		SCA	
	<i>BC</i> 2.1				
	AJ or 2.2	A1		AJ 4 th	
	<i>EF</i> 2.4			th	
	<i>HG</i> 2.6	A1		HG 6 th	
	GF 2.7 AB 2.8				
	AB 2.8 JI 2.9	A1	5	All correct	
	31 2.7	AI	3	An concet	
(b)	20.7	B1	1		
· /					
(c)	$A \qquad B \qquad C \qquad D \qquad E$	M1		MST – connec	ted (7+ edges)
		A1	2		
	J H G F				
(d)	<i>EF</i> (or 2.4)	M1		for BC, DF, El	T .
· /	(61 21.1)	A1	2		
	Total		10		
4(a)(i)	D				_
	27				Reverse
		M1		SCA	SCA
	15/	IVII		SCA	SCA
	15 10				
		m1		3 values at F	2 or 3 values at F
	12)B 16 E				
	28 8 37 16 16 136	m1		2 values at <i>I</i>	1 or 2 values at C
	12/				
	16 10 10			3 values at J	2 values at A
		m1		5 values at 5	2 values at A
	01/4 30 30 X58				
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	10 19 10 5 /15				
	10C				
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1		All correct	
	121				
	10 15				
		B1	6	46 at <i>K</i>	
	20 H				
(ii)	Route ABEIK	B1	1	Allow KIEBA	
(11)			1		
(b)	Consider A, D, K, H	B1		PI	
` ′	AD + KH = 27 + 30 = 57	M1			
	AH + DK = 20 + 20 = 40	A2,1,0			
	AK + DH = 46 + 40 = 86		_		
	Total: $308 + 40 = 348$	B1	5		
	Total		12		

Q	,		Solution	l		Marks	Total	Comments
5(a)(i)	40					B1	1	
(ii)	40					B1	1	
(b)	45 ≤ <i>T</i> ≤	£ 55				B1	1	
(c)(i)		A	В	С	D			
	A	-	20	38	35	B1		3 indep correct
	В	20	-	18	15			
	C	38	18	-	33			
	D	35	15	33	-	B1	2	All correct
(ii)	A B	D C	A			M1		Tour or visits all
			38			A1		Correct order or their 33
			= 106			B1	3	
(iii)	A B	D B	C B	\boldsymbol{A}		M1		Any expansion on (c)(ii)
						A1	2	Correct
					Total		10	

Q Q	<u>, </u>			Solı	ıtion				Marks	Total	Comments
6(a)(i)	A	В	C	\overline{D}	K	N	X	Y	M1		SCA
	1	-6	11								Must use at least 3 variables
					1						
						0					
							1				ct
						1		0	A1		1 st pass
					2	1					
					2		2				
							2	0	A1		2 nd pass
						2		Ü	111		2 Pass
					3						
							3				
								0			
						3			A1	4	All correct
(**)	4	D	C	D	v	A 7	1/2	17			
(ii)	<i>A</i> 1	<i>B</i> −10	<i>C</i> 29	<i>D</i> -20	K	N	X	Y			
	1	-10	29	-20	1						
					1	0					
						Ü	1				
								(0)	M1		1 st pass
						1					Must use at least 3 variables
					2						
							2	_			and
					2			6	A1		2 nd pass
					3		3				
							3	4	A1		3 rd pass
					4			7	711		5 puss
					•		4				
								0			
						2					
					5						
							5				
						2		0		A	A 11
						3			A1	4	All correct
(b)	Line	. 00							B1		
(0)		er end	ing o	r N →	- 3				В1 В1	2	
	1101	ci ciiu	ing U	1 1 V 7	- 5			Total	D1		
								Total		10	

MIDOT (COIII)	,	Solution		Marks	Total	Comments
Q	1 01				Total	
7(a)	1 – Shu			B1		For one correct
	2 – She			B1		For a second one correct
	3 – Qui					
	4 – Bub	ble		B1	3	For all correct
(b)	Solution	Comparisons	Swaps			
		•	•			
	1	1	1	B1, B1		Tallies: max 6/8
				,		
	2	2	1	B1, B1		
	2	<i>-</i>	1	D1, D1		
	3	3	3	B1, B1		
	3	3	3	D1, D1		
	4	3	3	D1 D1	8	
	4	3		B1, B1	11	
-			Total	3.61	11	A
8		`		M1		Any correct LHS in inequality
	2x + 4y + 3z	2 ≤ 360				
	3x + 2y + 4z	$7 \le 270$		A2,1,0		OE
				112,1,0		
	x+3y+5z	≤450 J				
	6x + 9y + 12	$z \ge 720$		M1		
	$\Rightarrow 2x + 3y +$	$-47 \ge 240$		A1		Allow further correct simplification
	, =	~		711		Throw further correct simplification
		2		3.61		W 11 2 1
	2x + 4y + 3x	$z \ge \frac{2}{5} (6x + 9y +$	12z)	M1		Must have 3 parts correct
		5`	,	A1		
	$2y \ge 2x + 9$	z OE		A1	8	Allow further correct simplification
			Total		8	
			TOTAL		75	
						1

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX

Key to mark scheme and abbreviations used in marking

M	mark is for method								
m or dM	mark is dependent on one or more M marks and is for method								
A	mark is dependent on M or m marks and is for accuracy								
В	mark is independent of M or m marks and is for method and accuracy								
E	mark is for explanation								
√or ft or F	follow through from previous								
	incorrect result	MC	mis-copy						
CAO	correct answer only	MR	mis-read						
CSO	correct solution only	RA	required accuracy						
AWFW	anything which falls within	FW	further work						
AWRT	anything which rounds to	ISW	ignore subsequent work						
ACF	any correct form	FIW	from incorrect work						
AG	answer given	BOD	given benefit of doubt						
SC	special case	WR	work replaced by candidate						
OE	or equivalent	FB	formulae book						
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme						
−x EE	deduct x marks for each error	G	graph						
NMS	no method shown	С	candidate						
PI	possibly implied	sf	significant figure(s)						
SCA	substantially correct approach	dp	decimal place(s)						

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01

Q				Solu	ıtion				Marks	Total	Comments
1(a)									M1		Bipartite graph: 2 sets of vertices with at least one edge
									A1	2	All correct
(b)	A3, E	34, <i>C</i> 2	2, <i>E</i> 5								Initial match
	Start	from	D, F	or 1,	6				M1		1st path must go beyond 2nd
									M1		2nd path letter/number
											eg $D-4$ (\neq) B/F If working is only on diagram, the path(s) must be clear , and only 1 path per diagram can be credited. If 2 paths shown on one diagram, max mark M1A1
	Accept paths in reverse order $D-4 \ (+)B-2 \ (+)C-6$ $F-5 \ (+)E-1$ or $F-4 \ (+)B-2 \ (+)C-6$ $D-4 \ (+)F-5 \ (+)E-1$ Match: $A3, B2, C6, D4, E1, F5$								A1		1st correct path
									A1		2nd correct path or F - 5(+)E - 3(+)A - 6 D - 4(+)B - 2(+)C - 6(+)A - 3(+)E - 1
									D.1	_	
	Mate	n: A.	$5, \mathbf{B2},$, Co, .	D4, E	1, F3		Total	B1	5 7	Must be clearly stated or indicated
2(a)	<u>P</u>	В	M	N	J	K	R	D	M1		Using quick sort
	<u>B</u>	M	N	J	K	D	P	<u>R</u>	A1		First pass (based on their pivot)
	В	<u>M</u>	N	J	K	D	P	R			
	В	<u>J</u>	K	D	M	<u>N</u>	P	R	A1		A correct third pass
	В	<u>D</u>	J	<u>K</u>	M	N	P	R	A1		All passes correct
									B1	5	Consistent pivots clearly labelled (at least three passes)
(b)(i)	28								B1	1	and passes,
(ii)	In re	verse	order	•				Total	B1	1 7	Allow descending
								Total		1	

MD01 (cont)				<u>, </u>
Q	Solution	Marks	Total	Comments
3(a)(i)	10	B1	1	
(1)		D.1		
(ii)	n-1	B1	1	
(b)	Condona condidates attampting all of part			
(b)	Condone candidates attempting all of part (b) together / in different order			
	(b) together / in different order			
(i)	AB	M1		Using Prim's
	BC			
	BD	A1		BD 3rd
	CF	A1		CF 4th
	DG or FJ			
	GK JK KJ GK			
	KH or KI			
	KI IE			
	EI KH	A1		All correct
		B1	5	10 edges
(ii)	(Length =) 155	B1	1	
(***)	G			
(iii)				
	D/			
	H			
	B	3.61		
		M1		Spanning tree with at least 8 edges
	E /			Any cycle scores M0
	Y /	A1	2	Correct and labelled
	C			Alternative: FJ instead of DG:
	• 4			G
	F			1
				<i>p</i>
				/
				"
				\downarrow^{k}
				/ . /
				A E
				, ,
				F
	Total		10	

MD01 (cont)	Solution	Marks	Total	Comments
Q	Solution	MIALKS	Total	
4(a)(i)	130	B1	1	$ \left[\begin{array}{ccccccccc} T & P & V & B & C & T \\ 8 & 48 & 18 & 43 & 13 \end{array}\right] $
(ii)	T P C B V T 8 18 43 18 51	M1		Tour (vertices or edges) starting from <i>T</i> (Letters not numbers)
		M1		Visits all vertices starting from T
		A1		Correct order
	= 138	B1	4	
(iii)	A possible solution, eg tour May be improved on	E1 E1	2	OE Allow 'can' in this case as (i) < (ii) OE
(b)(i)	T	M1		Spanning tree with 3 edges
	PT, CT, PV (48)	A1		Correct
	<i>c</i> •	m1		2 edges from B
	+ 2 shortest from B $+ 2 shortest from B$	A1		Correct
	(Lower bound =) 130	A1	5	CSO
(ii)	May not exist	E1		OE
(11)	Cannot be lowered	E1	2	OE OE
(c)	C V V	B1		
	Tour <i>or</i> optimum <i>or</i> same as (a)(i)	E1	2	Lower bound = Upper bound
	Total		16	11

Q	Solution	Marks	Total	Comments
5(a)	Odds A, B, C, D	M1		PI (but A, B, C, D must be mentioned)
	AB + CD = 270 + 270 = 540	m1		Considering 3 sets of pairings of odd vertices, eg AB with CD etc
	AC + BD = 290 + 290 = 580 $AD + BC = 260 + 270 = 530$	A2,1,0		A1 for 2 correct, A2 for all correct
	Repeat AD, BC	A1F		Follow through their shortest pairing PI by adding 530 to 1920 Or <i>AEHD</i> or <i>DHEA</i> and <i>BFGC</i> or <i>CGFB</i> listed in any route
	(Length = 1920 + 530 =) 2450 (metres)	B1	6	
(b)	Repeats BC	E1		PI by <i>BFGC</i> or <i>CGFB</i> listed in a complete route or adding 270 / subtracting 260
	(Length = $1920 + 270 =$) 2190 (metres)	B1	2	2450 – 260 = 2190 (2190 with no evidence scores E0B1)
(c)(i)	Min. repeat AD	E1		PI by <i>AEHD</i> or <i>DHEA</i> listed in a complete route or adding 260 / subtracting 270
	(Length = $1920 + 260 =$) 2180 (metres)	B1	2	2450 - 270 = 2180 (2180 with no evidence scores E0B1)
(ii)	B, C	B1	1	Condone start at <i>B</i> , finish at <i>C</i> (or reverse)
	Total		11	

Q	Solution	Marks	Total	Comments
6(a)	All inequalities must be as below	P.1		D. J.
	$x \le 100, \ y \le 80$	B1		Both
	$x + y \geqslant 60$	B1		
	x < y	B1		OE
	$2x + 8y \geqslant 320$	B1 B1	5	OE
	(minimise C =) 1.5x + 3y	БI	3	
(b)	<i>y</i> A			
	80			100 00)
	FR 60	B1		$\begin{cases} x = 100, y = 80 \\ \text{within } \frac{1}{2} \text{ square} \end{cases}$
		B1 × 3		Other lines from $(0,0)$ to $(80,80)$
	40	D.1		
		B1		Feasible Region CAO (must have scored
	20			B4 for drawing lines) (condone $x = y$ as solid line)
				(condone $x = y$ as solid line)
	0	B1	6	An Objective Line with gradient –0.5
	0 20 40 60 80 100 x			
	34			
(c)	Considering an extreme point in their	M1		
(C)	region	1711		
	Min at intersect of $x + y = 60$			PI by indication on diagram or
	x + 4y = 160	A1		
				$x = 26\frac{2}{3} y = 33\frac{1}{3}$
	Considering a pair of integer values where			
	Considering a pair of integer values where $26 \le x \le 28$, $32 \le y \le 34$	M1		
	$20 \leqslant x \leqslant 20,32 \leqslant y \leqslant 37$			
	(C =) £141 at (26, 34)	A1	4	
	or £141 at (28, 33)	AI		
	Total		15	

MD01 ((cont)
--------	--------

Q	Solution	Marks	Total	Comments
7(a)				
	8			22) 23 E
		5		E E
			0/	2x+y
	8/ 5		0	
		/		12 $22 + 2x + y$
	14			F $22 + 3x - 2y$
			9	22 H ⁴³
	0 12+3+4			[2]
	1	10		12
	9 3			3x-2y
		4	1	
	CY	1.00	5	G
	9		12	223
		M1		SCA; cancelling at 2 (or more) vertices
		1111		Series and a continuous of the continuous
		A1		Correct at D
				_
		M1		2 values at E
		M1		2 values at G
		1111		2 varies at G
		A1		All correct (condone 0 missing at A and
				missing expressions in x and y at H)
	(Min =) 43	B1	6	Accept 43 at H
(b)	2x + y = n	M1		Obtaining a pair of equations in this form
(0)	2x + y = p $3x - 2y = q$	1V1 1		or $(22) + 2x + y = (43)$ and
	-2y-q			(22) + 3x - 2y = (43)
				2x + y = 21 and $3x - 2y = 21$
	x = 9	A1		CAO
	y = 3	A1	3	CAO
				NMS: both correct M1A2
	m . i		0	one/none correct M0A0
	Total TOTAL		9 75	
	IUIAL		/5	

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation

√or ft or F	follow through from previous		
	incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
−x EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01

MD01 Q	Solution	Marks	Total	Comments
	Solution		1 Otal	
1(a)	<i>GH</i> (5)	M1		SCA allow Prim's from any vertex but not Kruskal or path – min of 8 edges
	GH (5) GE (7)			but not Kruskar or pain – min or 8 edges
	GE (7) HJ (8)	B1		10 edges
	BE (10)	A1		HJ 3rd
	BD (11)	A1		BE 4th
	<i>IH</i> (14)	711		BE HII
	DC (15)			
	AC (6)	A1		AC 8th
	FJ (19)			
	HK (22)	A1	6	All correct
	, ,			
(b)	117	B1	1	
(c)	B E	M1		MST (8+ edges)
		A1		10 edges
	\p \	Α1		10 cuges
	A G H		_	
		A1	3	All correct (+ vertices labelled)
	\ /			
	V			
	(Possibly shown in part (a))		10	
2(a)	Total	N/1	10	Must have '12a not 5/2a
2(a)	Labelled 6×6 matrix with '1's	M1		Must have '1's not '✓'s Or
	1 2 3 4 5 6			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3 0 1 0 0 0 0
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4 0 0 0 1 1 0
	$E \mid 0 0 0 1 1 0$			5 0 0 0 0 1 1
	$F \mid 0 0 0 0 1 0$			6 0 0 0 1 0 0
	•			OE
		A1	2	Must have '0's not '-'s or blank
(b)		M1		A - 2 + C or $3 - B + 1$
	A-2+C-1+B-3	A1		
		M1		$F-5 \neq E$ or $6-D \neq 4$
	F - 5 + E - 4 + D - 6	A1		
	Match: A2, C1, B3, F5, E4, D6	B1	5	
				If working on diagram:
				Only one path on each half
				M1A1M1A1 as above – start point must
				be shown, otherwise M0
	Total		7	

Q	Solution	Marks	Total	Comments					
3(a)(i)	Solution Marks Iolar Comments								
		M1 A1 m1 A1 m1 A1	6	Cancelling at at least 2 vertices Correct at <i>F</i> 2 different values at <i>B</i> Correct at <i>G</i> – depends only on M1 4 different values at <i>H</i> All correct – no extra values					
	Alternative if working from H: H[0], A[10], B 23[21], F 25[24], C[29], D 36(35)[34], G[20], E 36 29[27]	(M1) (A1) (m1) (A1) (m1) (A1)		SCA Correct at B 2 values at F Correct at E 2 or 3 values at D All correct					
(ii)	Route: DEFBAH	B1	1	Or reverse					
(b)(i)	24	B1	1						
(ii)	(Odds) A , C , D , G only AC + DG = 19 + 15 or $34AD + CG = 24 + 10$ or $34AG + CD = 19 + 6$ or $25(Repeat AG + CD)Length = 25 + 167$	E1 M1 A2,1,0		PI 3 sets of pairs 167 + their shortest pairing					
	= 192	B1	6	107 + then shortest pairing					
	Total		14						

Q Q	Solution	Marks	Total	Comments
4 (a)	$x + y + z \ge 110$	B1		-1 for strict inequalities (max)
				-1 for using g , p , s instead of x , y , z (max)
				(max)
	$y \ge x$	B1		
		D.1		
	$y + z \le 150$	B1		
	$16x + 8y + 24z \le 3120$ ISW	B1		
	$(2x + y + 3z \le 390)$			
	(D.) 70 . 20 . 50			
	(P =) 70x + 30y + 50z	B1	5	
(b)(i)	z = 30	M1		Justify by correctly substituting into at
	x y > 80 (or x y 20 > 110)			least one of their inequalities
	$x + y \ge 80 \text{ (or } x + y + 30 \ge 110 \text{)}$ $(y \ge x)$			
	$y \le x$ y \le 120 (or y + 30 \le 150)			
	$2x + y \le 300$ (or $2x + y + 90 \le 390$ OE)	A1	2	Correctly substituting into all 3
				inequalities
	(P = 70x + 30y + 1500)			AG
(ii)	y †	B1		y = 120
, ,	140			
	120	B1		x + y = 80
		B1		y = x, correct at (40, 40) and (100, 100)
	100 FR			
	80	M1		2x + y = 300, -ve gradient with one
				correct point in the interval $80 \le x \le 120$
	60	A1		Correct at (100, 100) and (90, 120)
	40	B1		Correct region labelled
	OI.	Di		Correct region labelled
	20	M1		OL: gradient of $-\frac{7}{3}$ or $-\frac{3}{7}$
		2.22		
	0 20 40 60 80 100 120 x	A1	8	Gradient = $-\frac{7}{3}$
(iii)	Considering (90, 120) and/or (100, 100) (£) 11500	M1 A1		Ignore other points being considered
	100 goats, 100 pigs, 30 sheep	A1	3	CAO
	Total		18	

MD01 (cont	.)				~ -						T ~
Q				ı	Solu	tion			Marks	Total	Comments
5	<i>A</i> 1	<i>B</i> 3	<i>C</i> 0	D	Ε	F	G	Н			Condone equivalent fractions
	3		7	1	2	0	1.5	2.25	M1 A1 M1		SCA – finding a value for G 1st pass G, H correct 2nd pass – finding a new value for C
		7		2	5	5	1.4				
	7	17	17			10	1.4	1.96	A1 M1		All correct on pass 3rd pass $C = 17$ or their $(2B+A)$
	(-		5	12	12	1.41Ġ	2.007	A1	6	AWRT 1.417 All correct (allow 2.005 to 2.008) and no further passes
	$\sqrt{\sqrt{2}}$	2 is a	ippro	xima	itely	12		TF 4 1			
								Total		6	
6(a)		MS' + 10	T +10	+ 11	= 39)			M1 A1	2	4 edges
(b)	Max	k MS	ST = 8 $= 6$		7 +1	7 +18	3		M1 A1	2	8 + 18 + 2 others
(c)				<	\(\frac{1}{8}\)	100)		M1		Connected graph with 5 vertices (all edges numbered, from <i>G</i>)
	1	7				11)13		A1		MST = 53 8, 11, 17, 17 or 8, 10, 17, 18
			+		7	+			A1	3	other edges OE (other possibilities not shown) (all edges numbered, from G)
								Total		7	
								_ 0 0001	l .	· ·	

Q Q	Solution		Marks	Total	Comments
7(a)(i)	2x - 4 < x + 6		M1		2x-4 <
	$\therefore x < 10$	CSO	A1	2	AG
(**)	2 4 2 7 05				
(ii)	2x - 4 < 3x - 7 OE		B1		Allow any expression in matrix > 0
	2x - 4 < 4x - 14 OE		B1	2	Allow any expression in matrix > 0
	(=x>3)				
	$\begin{pmatrix} = x > 3 \\ x > 5 \end{pmatrix}$				
(b)(i)	2x-1 <		M1		Condone ≤ for method mark only
(-)()	2x-1 < 3x-7		A1		
	2x-1 < x+8		A1	3	
(ii)	$\Rightarrow (x > 6)$				
	<i>x</i> < 9		B1		Possibly earned in (b)(i)
	2x-2 < 3x-9		M1		Condone \leq for method mark only
	x > 7		A1		
	0		D.1	4	
	x = 8		B1	4	
(iii)	A C D E B A				
(111)	12 15 14 17 14		M1		8x + 8 with their integer x
			1,11		
	= 72		A1	2	CAO (unsupported 72 scores M0A0)
		Total		13	
		TOTAL		75	

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation

√or ft or F	follow through from previous		
	incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
–x EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01

Q	Solution	Marks	Total	Comments			
1(a)		M1 A1	2	Bipartite graph, 2 sets of (some) vertices labelled, 6+ edges			
(b)	A3, B4, C2, E5 $D-4+B, 6-C+2, 6-E+5$ $F-5+E, 1-A+3, F-4+B$	M1 M1		1 correct 1 correct			
	D-4+B-2+C-6 $F-5+E-3+A-1$ ignore extra paths attempted	A1 A1		Or reverse Or reverse			
	OR						
	F-4+B-2+C-6 $D-4+F-5+E-3+A-1$ ignore extra paths attempted	(A1) (A1)		Or reverse Or reverse			
	A1, B2, C6, D4, E3, F5	B1	5	Must be list, not diagram			
	Watch for correct method using unusual notation One continuous path scores M1A1M0 eg $D-4+B-2+C-6+F-5+E-3+A-1$ If working on diagram(s) only then max M1A0 M1A0 for each M1: must have start point labelled and a clear path (numerically labelled or coloured) of at le left to right to left (or reverse)						

Q Q	<u>/</u>		Solution	Marks	Total	Comments
2			Solution	Maiks	Total	Comments
2		С	S			
	1 st	1	0			
	• nd	_		B6	6	All 12 correct
	2 nd	2	2	(B5) (B4)		10 correct 8 correct
	3 rd	1	0	(B3)		7 correct
	3	•	· ·	(B2)		6 correct
	4 th	4	3	(B1)		5 correct
	t b					Tallies can only score may P2 for three 1s
	5 th	1	0			Tallies can only score max B2 for three 1s and three 0s (not blanks)
	6 th	6	6			and three of (not stands)
	U	0	U			
			Total		6	
3(a)(i)	9			B1	1	
(;;)	₂₀ 1			B1	1	
(ii)	<i>n</i> − 1			Б1	1	
(b)(i)	EF (8)	M1		SCA minimum spanning tree, 7+ edges
	BC	8.5				(not cycles), must be in ascending order
	CG	10		A1		and edges required (not lengths alone) BC 2 nd
	JI BI	11.5 12		AI		BC 2
	AB	14		A1		JI 4 th
	GE	16		-		
	CH DE	16.5 21		B1		9 edges (not lengths alone) – may be earned in (b)(iii)
	DE (<u>∠</u> ∠1				earned in (b)(iii)
				A1	5	All correct
	117.5			D1	1	
(ii)	117.5			B1	1	
(iii)	0	.8	5 6 5			
				M1		7+ edges, minimum spanning tree
				A1	2	Correct, including labelling
		+		711		Correct, including idocining
		-	0 0			
			Total		10	

Q Q	Solution Solution	Marks	Total	Comments	
4(a)	Odds B, C, H, F	E1	10111	PI (must be these 4 vertices - CAO)	
	BC + HF = 160 + 320 or 480 BH + CF = 280 + 520 or 800 BF + CH = 360 + 210 or 570	M1 A2,1,0		3 sets of pairs A2 for all 3 correct, A1 for 2 correct	
	(Total =)(2410 + 480) = 2890	A1F B1	6	2410 + their shortest pairing (PI) SC 2890 with no working or 2890 with one route listed scores 2/6 Route listed not 2890 scores 0/6	
(b)	80 80	C ((0))	0	H 210 130 P 340	
	80 250			(20 200	
	[160] _B 80 /	[240] 250 8	0 /	N 330 200 F ⁵²⁰	
	90 176			130. 150.	
	250) A 150 A	416	n	[450] E 60 T	
	G 150 A	1	70	/2 00	
		M1		SCA; cancelling required at <i>I</i> or <i>N</i>	
		m1		2 values at <i>I</i>	
		m1		2 values at M	
		m1		2 values at N	
		A1		All correct – no extra values Condone 520 boxed at <i>F</i> and condone final values at each vertex unboxed	
		B1		510 at <i>T</i> (diagram takes precedence over answer book)	
	Route CABINET	B1	7	Or reverse	
	Tot	ai	13		

Q	Solution	Marks	Total	Comments
5(a)	eg ABCDEFA	M1	2	Any tour <i>ABA</i> or better, any start vertex but not revisiting a vertex May be shown in a labelled diagram of a cycle (eg triangle <i>ABC</i>) With all vertices visited May be shown in a labelled diagram of a cycle
(b)(i)	F D C A B E F (20) (15) (5) (25) (15) (15) (= 95) AG	M1 m1 A1	3	Any tour, start/finish at <i>F</i> Visits all vertices Correct order If solution shown solely on matrix, then order of selection of vertices must be shown
(ii)	Tour	E1		"It's an answer", "a cycle", "it works",
	May be improved on	E1	2	"it's possible" "Can't be worse", "not necessarily best", "could be improved" Not "can be improved"
(c)	F E C A B D F	M1		Tour <i>FE</i> (<i>ABCD</i> in any order with <i>B</i> before <i>D</i>) <i>F</i>
	(30) (7) (5) (25) (11) (10)	A1		Correct order
	= 88	B1	3	If solution shown solely on matrix, order of selection of vertices must be shown
	Total		10	

Q Q	Solution	Marks	Total	Comments
6				Working must be in x , y and z
				Equalities can only score M marks
(-)	6 4 2 < 240	N / 1		Strict inequalities: –1 first error only
(a)	$6x + 4y + 2z \le 240$	M1		
	$3x + 2y + z \le 120$	A1		CAO
	$6x + 3y + 9z \le 300$	M1		
	$2x + y + 3z \le 100$	A1		CAO
	_w · y · e2 = 100	711		
	$12x + 18y + 6z \le 900$	M1		
	$2x + 3y + z \le 150$	A1		CAO
	$12x + 18y + 6z \ge 2(6x + 3y + 9z)$	M1		OE
	$y \ge z$	A1	8	CSO ; OE in simplified form eg $y-z \ge 0$
(b)(i)	(z=x)			
(0)(1)				Correct unsimplified subst $x = z$ into
	$4x + 2y \le 120 \text{ OE or } 3x + 3y \le 150 \text{ OE}$	M1		either of these 2 correct inequs. (seen)
	$4x + 2y \le 120 \text{ OE } \Rightarrow 2x + y \le 60 \text{ AG}$	A 1		
	$3x + 3y \le 150 \text{ OE} \implies x + y \le 50 \mathbf{AG}$	A1		Both correct and simplified
	$5x + y \le 100, y \ge x $ AG	A1	3	Correct subst $x = z$ into 4 correct inequs.
	Table 1			
(ii)	FR 40 x	B1 B1 B1 B1	5	Line 1 correct at $(0, 50)$ $(25, 25)$ Line 2 correct at $(10, 50)$ $(20, 0)$ Line 3 correct at $(0, 60)$ $(30, 0)$ Line 4 correct at $(0, 0)$ $(25, 25)$ Each line correct to $\frac{1}{2}$ square, horizontally or vertically FR, must have all lines correct and labelled region (condone no shading)
(iii)	N = x + y + z = 2x + y	M1		Stated or PI
	Max = 60	A1	2	CSO; SC unsupported 60 scores 2/2
(iv)	10, 40, 10	B1		Any correct: may be correct in nort (iii)
(iv)	10, 40, 10	DI		Any correct; may be earned in part (iii)
	12, 36, 12	B1		3 correct
	13, 34, 13	B1	3	4 correct and no extras
	Total		21	

MID01 (cont		Mariles	Total	Comments
Q 7(a)(i)	Solution	Marks	Total	Comments
7(a)(i)		B1	1	OE
(ii)		M1		4 edges
		A1	2	OE
(iii)			-	Note: new edges must meet each square at vertices on the opposite ends of a side of the square eg
		M1		4 edges
		A1	2	Eulerian (all vertices are of even order)
(b)(i)	n odd	B1	1	$(n\pm 1)$ even
(ii)	(Triangle) $n = 3$	B2	2	Triangle, stated or drawn, scores B1
	Total		8	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX

Key to mark scheme and abbreviations used in marking

M	mark is for method							
m or dM	mark is dependent on one or more M marks and is for method							
A	mark is dependent on M or m marks and is for accuracy							
В	mark is independent of M or m marks and	mark is independent of M or m marks and is for method and accuracy						
Е	mark is for explanation							
or ft or F	follow through from previous							
	incorrect result	MC	mis-copy					
CAO	correct answer only MR mis-read							
CSO	correct solution only RA required accuracy							
AWFW	anything which falls within	FW	further work					
AWRT	anything which rounds to	ISW	ignore subsequent work					
ACF	any correct form	FIW	from incorrect work					
AG	answer given	BOD	given benefit of doubt					
SC	special case	WR	work replaced by candidate					
OE	or equivalent	FB	formulae book					
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme					
–x EE	deduct x marks for each error	G	graph					
NMS	no method shown	С	candidate					
PI	possibly implied	sf	significant figure(s)					
SCA	substantially correct approach	dp	decimal place(s)					

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01

Q	Solution	Marks	Total	Comments
1(a)	B N N P P R S S V	M1 A1	2	Bipartite graph, 2 sets of (some) vertices, labelled, 6+ edges
(b)	AP, BR, CN, ES $ D-R \neq B \qquad V-C \neq N \qquad M-A \neq P \\ F-R \neq B \qquad D-S \neq E \qquad V-E \neq S $	M1 M1		1 correct 2^{nd} path started correctly, must be different start point from 1^{st} path (allow $F - R \neq D$ for 2^{nd} M1 if $D - R \neq B$ first)
	$\begin{aligned} D - R & \neq B - N & \neq C - V \\ F - R & \neq D - S & \neq E - P + A - M \end{aligned}$	A1 A1		or reverse or reverse, but two paths must be in this order
	OR D-S + E-V F-R + B-N + C-V + E-P + A- M OR	(A1) (A1)		or reverse or reverse, but two paths must be in this order
	$F-R+B-N+C-V \\ D-S+E-P+A-M$	(A1) (A1)		or reverse or reverse, the two paths can be in either order
	AM, BN, CV, DS, EP, FR Total	B1	5 7	Must be written as a list

MD01 (cont))						
Q		Solution	on		Marks	Total	Comments
2(a)	13 10 1 10 11 4 10 4 1 4 10 6 4 6	1 4 12 1 6 6 7 1 7 10 1	4 12 12 6 6 7 7 12 11 12 11 12	6 7 7 16 13 16 13 16 13 16 13 16 13 16	A1 A1	5	SCA, must have 16 at end of first pass 1st pass 2nd pass 3rd pass All correct, must have only 2 identical lines at end. Ignore any intermediate lines and labelling on lines.
(b)	1st 2nd 3rd	7 6 5	S 6 6 3	_	B3;2;1	3	6 correct; 5 correct; 3 correct – with number of comparisons and swaps being clearly identified for each of the three passes (may be earned in part (a))
				Tota	1	8	
3(a)					· ·		
		8 6 4 2 0 0	2 4		FR 8 1	0 12	14 16 18 20 x
					M1 A1 A1 B1 B1 B1	6	line $y = mx$, must be correct to 1 square horizontally or vertically at origin through $(0, 0)$ and $(4, 8)$ through $(0, 0)$ and $(16, 4)$ line through $(15, 8)$ and $(17, 0)$ line through $(4, 8)$ and $(12, 6)$ FR must have scored previous 5 marks and labelled region (condone no shading)
(b)(i)	Max (4, 8) = 44				B1 B1	2	Coordinates must be stated explicitly
(ii)	Max (16, 4) = 84				B1 B1	2	Coordinates must be stated explicitly
				Tota	ıl	10	

Q	Solution	Marks	Total	Comments
4(a)(i)	<i>AC</i> 13	M1		Use of Prim's (not Kruskal's and not
	<i>AE</i> 14			path); 6+ edges (no cycles); edges, not
	<i>EI</i> 15			lengths or vertices, with first 2 edges
	<i>CD</i> 16			correct
	<i>CH</i> 20	B1		8 edges
	<i>EF</i> 21	A1		CH 5th
	FB 19	A1		EF 6th
	<i>BG</i> 19	A1	5	All correct
(ii)	137	B1	1	
(iii)	9			
	в/ с			
		M1		6+ edges, no cycles
	F/ A/	1,11		or edges, no cycles
	"	A1	2	Correct, including labelling
				, 2
	B D			
(b)	(Odds) B, C, D, E	E1		PI CAO
	BC + DE = 22 + 18 (or 40)	M1		3 correct sets of pairs (lettered)
	BD + CE = 38 + 27 (or 65)			1 , , ,
	BE + CD = 22 + 16 (or 38)	A2;1		3 correct sets of numbers; 2 correct sets of
	52 (CD	712,1		numbers
	min = 307 + 38	A1F		PI 307 plus their shortest
	=345	B1	6	
				SC:
				345 with no M mark scored scores 2/last 5
				Route without 345 scores 0/last 5
	Total		14	

MD01 (cont)			Solutio	on			Marks	Total	Com	ments
	(B	E	C	D D	<u>A</u>	<i>B</i>)		Marks	Total	Com	ments
5(a)	(D	E	C	D	А	12(.0)		B1	1		
(b)	В	D	\boldsymbol{A}	C	E	В		M1		Tour starts/finishes at <i>B</i>	If solution only on a matrix, then order
								m1		Visits <i>B</i> twice and all other vertices once	of selection of vertices must be clearly shown
					Ξ	= 13.5		A1 B1	4	Correct order	
(c)	12(.0))						B1F	1	Their min, condone v	vriting 'part (a)' ft
(d)	В	A	D	E	C	В		M1		Tour starts/finishes at <i>B</i>	If solution only on a matrix, then order
								m1		Visits <i>B</i> twice and all other vertices once	of selection of vertices must be clearly shown
					=	= 12.1		A1 B1	4	Correct order	
							Total		10		
6(a)	(A) (1)	(<i>B</i>)	(<i>N</i>)	0	1	Н	E	M1		SCA trace as far as a with at least 1 value	
				126		2	1	A1		T = 126	
				180	5			m1		T = (180) trace as far and 2 values for D	as a third value for T
	("Are	a ='')	180					A1	4	All correct values included 180 and no extra values <i>B</i> , <i>N</i> and their values	les, but including A ,
(b)	(A) (1)	(<i>B</i>)	(<i>N</i>) (4)	0	1	Н	E	M1		SCA as above	
				126 142	2	1	0.5	A1		T = 142	
				196 324	3 4			m1		T = (324) 5 values fo	r T
	("Are	 a ='')	162		5			A1	4	All correct values ind 162 and no extra values B, N and their values	les, but including A ,
							Total		8	,	, ,
1											

MD01 (cont)	
-------------	--

Q Q	Solution	Marks	Total	Comments
7(a)		E 25 2	4	
	20	9	20	
	5 B	F 15	12	127
	5	4		23
	10 0	G	18	K = 20 $(28 + 3x + y)$
		20	x + y	(28 + 3x + y) $M(38 + x + y)$ $(30 + x + y)$
	6 8 2	18 2	17	3x + y
		Н		
	6 D 10	16	12	L 28
	20	9/	20	
		1		
		1 26 2	5	
		M1		SCA cancelling at C (PI)
		A1 m1		Correct values at <i>C</i> 3 values at <i>G</i>
		A1		Correct values at G
		m1		2 values at both E and I
		A1		All correct, with no extra values, and including $18 + x + y$ boxed at K
		B1	7	50 at M (diagram takes precedence over
				answer book)
(b)	3x + y = 22) OE	M1		setting up simultaneous equations
	x + y = 12) OE			
	$\therefore x=5, y=7$	A1+1	3	CSO
	Total		10	SC $x = 5$, $y = 7$ with no working $3/3$
8	$2x+3y+4z \le 360$		10	
	$3x+y+5z\leq 300$	B2,1,0		
	$4x+3y+2z \le 400$			
	2x+3y+4z(>)3x+y+5z	M1		Their A (>) their B
	2y > x + z	A1		OE
	$5x+4y+9z(\ge)4x+3y+2z$	M1		Their A + B (≥) their C
	$x + y + 7z \ge 0$	A1		OE
	$4x+3y+2z(\ge)\frac{40}{100}(9x+7y+11z)$	M1		Their C (≥) 40% of their total OE
	$2x + y \ge 12z$	A1	8	OE
	Total		8	
	TOTAL		75	

General Certificate of Education June 2010

Mathematics MD01

Decision 1

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method								
m or dM	mark is dependent on one or more M marks	and is for metho	od						
A	mark is dependent on M or m marks and is for accuracy								
В	mark is independent of M or m marks and is for method and accuracy								
E	mark is for explanation								
$\sqrt{\text{or ft or F}}$	follow through from previous								
	incorrect result	MC	mis-copy						
CAO	correct answer only	MR	mis-read						
CSO	correct solution only	RA	required accuracy						
AWFW	anything which falls within	FW	further work						
AWRT	anything which rounds to	ISW	ignore subsequent work						
ACF	any correct form	FIW	from incorrect work						
AG	answer given	BOD	given benefit of doubt						
SC	special case	WR	work replaced by candidate						
OE	or equivalent	FB	formulae book						
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme						
–x EE	deduct x marks for each error	G	graph						
NMS	no method shown	c	candidate						
PI	possibly implied	sf	significant figure(s)						
SCA	substantially correct approach	dp	decimal place(s)						

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01

MIDUI		1		T
Q	Solution	Marks	Total	Comments
1(a)	B C D D D S S S S S S S S S S S S S S S S	M1	2	Bipartite graph, 2 sets of (some) vertices, labelled, 6+ edges. All correct
(b)	3 letters matched to 2 numbers impossible or 2 letters matched to 3 numbers impossible	E1		OE; PI by subsequent E1
	A, D, E matched to 1, 5 impossible or B, C matched to 2, 3, 4 impossible	E1	2	OE
	Total		4	

O CONT			Sol	lution		Marks	Total	Comments
2(a)(i)	(6	2	3	5	4)	11141110	1000	Comments
=(#)(=)	2	3	5	4	6	M1		Bubble, condone 1 slip but must have 6 at end of first pass
						A1		1st pass correct
	2 2	3	4	5	6			
	2	3	4	5	6	A1	3	All correct, these 3 lines only
	Or re	verse:						
	(6	2	3	5	4)			
	2	6	3	4	5	M1		Bubble, condone 1 slip but must have 2 at start of 1st pass
						A1		1st pass correct
	2	3	6	4	5			
	2	3 3 3	4	6	5			
	2	3	4	5	6	A1		All correct these 4 lines only
								NOTE
								(6 2 3 5 4)
								2 3 5 4 6 2 3 5 4 6
								2 3 5 4 6
								2 3 4 5 6
(40)							_	scores M0
(ii)	4					B1	1	
(b)(i)	(<u>6</u>	<u>2</u> 6	3	5	4)			
	2	6	3	5	4	M1		Shuttle – swap 2 and 6 only on 1st pass
	2	3	6	5	4	A1		2nd pass
	2	3	5	6	<u>4</u> 6	A1		3rd pass
	2	3	4	5	6	A1	4	All correct
(ii)	1					B1	1	
, ,					Total		9	

Q Q	Solution	Marks	Total	Comments
3(a)	HI 6 8 IJ 9	M1		Kruskal's, 6 + edges stated, not just lengths, (no cycles) must be in ascending order (condone 1 slip only)
	IG 11 AB 12	B1		9 edges
	CG 14 BF 16	A1		IJ 3rd
	$ \begin{array}{ccc} BE & 17 \\ FI & 19 \end{array} $	A1		AB 5th
	, ,	A1		BF 7th
		A1	6	All correct
(b)	112	B1	1	
(c)		M1 A1 A1	3	tree 7+ edges 9 edges All correct, including labelling
(d)	CG Total	B1	1 11	

MD01 (cont	Solution	Marks	Total	Comments				
4 (a)	$\frac{B}{\P}$ [49]							
		I						
		12						
	A 58 47 13	D	37	ii.				
				50 48				
	19	6		19				
	7	10		/10				
	46 F 20	F	/	20				
	46 E 20	X		20 G 49 39				
	20 11	333	2	13 /20				
	H	22		1200				
	2t 20 9		8	1/20 /40				
	15 5		6					
	<i>J</i>	12 12		L_{9}				
		12	/					
	6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/9					
		M						
		M1 A1		SCA, cancelling at 2+ vertices				
		m1		Correct values at <i>K</i> , condone no box at 11 3 values at <i>F</i>				
		m1 m1		2 values at E or G 2 values at A or C				
		A1		All correct including final values at vertices boxed				
a > a >		B1	7	49 at <i>B</i>				
(b)(i)	Odd vertices A, B, C, M	E1		PI, CAO				
	AB + CM = 25 + 48 or 73 AC + BM = 24 + 49 or 73	M1		3 correct sets of lettered pairs of candidate's vertices				
	AM + BC = 47 + 23 or 70	A2,1		3 correct, 2 correct				
	Min = 384 + 70	A1F	_	PI, 384 plus their shortest				
	= 454	B1	6	SC				
				454 with no working, or 454 with route 2/6				
(22)	4	D 1	1	Route without 454 0/6				
(ii)	4 Total	B1	1 14					

MIDUI (cont		T		
Q	Solution	Marks	Total	Comments
5(a)	S T R I N G S	M1		Tour starting from any vertex
	64 70 82 80 82 72	m1		Visits all other vertices only once
		A1		Correct order
	= 450	B1	4	
				Note: If solution on a matrix then order of
				selection of vertices must be clearly
				shown
(b)	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1F	1	Must have seered M2 in part (a)
(b)	Or reverse	ріг	1	Must have scored M2 in part (a)
	Of feverse			
(c)	Delete S	M1		Clear method: spanning tree (edges or
(c)		1,11		diagram, not just numbers) with one
				vertex deleted AND adding 2 edges from
				deleted vertex (condone double shortest
				edge from deleted vertex)
	G^{\bullet}			
	<i>آ</i> و			
	76 73			
		B1		Spanning tree with 4 edges (may include
	74 • N			<i>S</i>)
	T			G 1500
	70	A1		Correct MST
	R			
	+			
	T			
	•			
		A1F		2 shortest from candidate's deleted vertex
	64 /68	АІГ		(not shortest edge doubled)
				(not shortest eage doddied)
	Š			
	= 425	A1	5	SC 425 without earning first M1: 2/5
	Total		10	

Q Solution Marks Total Comments 6(a) $x \ge 190, y \ge 50, z \ge 50$ oe $x + y + z \ge 300$ oe $5x + y + z \ge 1000$ oe $5x + y + z \ge 1000$ oe $5x + 4y + 4z \le 2000$ or $5x + 4y + 4z \le 2000$ or $2x \ge 3y + 3z$ Strict inequalities: penalise first two instances only (b)(i) $y = z$ $x \ge 190, y \ge 50$ $x + 2y \ge 300$ oe $x \ge 6y$ $y \le 1/2 = 3x$ oe Al 2 AG All correct (3 'or' become 'and') (ii) $y = z$ $y \ge 300$ oe Al 2 AG All correct (3 'or' become 'and') (iii) $y = z$ $y \ge 300$ oe Al 2 AG All correct (3 'or' become 'and') (iv) $y \le 1/2 = 3x$ oe Al 2 AG All correct (3 'or' become 'and') (iii) $y = z$ $y \ge 300$ oe Al 3 AG All correct (3 'or' become 'and') (iv) $y \le 1/2 = 3x$ $y \ge 30$ oe Al 3 AG All correct (3 'or' become 'and') (iv) $y \le 1/2 = 3x$ $y \ge 30$ of a AG All correct (3 'or' become 'and') (iv) $y \le 1/2 = 3x$ $y \ge 30$ of a AG All correct (3 'or' become 'and') (iv) $y \ge 1/2 = 3x$	MD01 (cont)					
$x+y+z\geq 300 \qquad \text{oe} \qquad \text{B1} \\ 2.5x+2y+2z\leq 1000 \qquad \text{oe} \qquad \text{B1} \\ (5x+4y+4z\leq 2000) \qquad x\geq \frac{60}{100}(x+y+z) \qquad \text{oe} \qquad \text{B1} \\ (2x\geq 3y+3z) \qquad \text{oe} \qquad \text{B1} \qquad 4 \qquad \text{Strict inequalities: penalise first two} \\ x+y+z\geq 300 \qquad \text{oe} \qquad \text{M1} \qquad x+y+z\geq 300 \text{ or } 5x+4y+4y\leq 2000 \\ x+2y\geq 300 \qquad \text{oe} \qquad \text{M1} \qquad x+y+z\geq 300 \text{ or } 5x+4y+4y\leq 2000 \\ 2x\geq 6y \qquad y\leq \frac{1}{3}x \qquad \text{oe} \qquad \text{A1} \qquad 2 \qquad \text{AG All correct (3 'or' become 'and')} \\ \text{(ii)} \qquad					Total	Comments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6(a)	$x \ge 190, y \ge 50, z \ge 50$	oe	B1)		
(b)(i) $x \ge \frac{60}{100}(x+y+z)$ oc $(2x \ge 3y+3z)$ (b)(i) $y = z$ $x \ge 190$, $y \ge 50$ $x + 2y \ge 300$ oe M1 $x + y + y \ge 300$ or $5x + 4y + 4y \le 2000$ or $2x \ge 3y + 3y$ ie at least one clear line of working showing substitution of $y = z$ $(y \le \frac{1}{3}x)$ oe A1 2 AG All correct (3 'or' become 'and') (ii) $x = \frac{y}{300}$ $x = \frac{y}{300}$ $x = \frac{y}{300}$ $x = \frac{1}{3}x$ $x = \frac{y}{300}$ $x = \frac{1}{3}x$ $x = \frac{y}{300}$ $x = \frac{1}{3}x$ $x = \frac{1}{$		$x + y + z \ge 300$	oe	B1		
(b)(i) $x \ge \frac{60}{100}(x+y+z)$ oe BI 4 (b)(i) $y = z$ $x \ge 190, y \ge 50$ $x + 2y \ge 300$ oe MI $x + y + y \ge 300$ or $5x + 4y + 4y \le 2000$ or $2x \ge 3y + 3y$ is at least one clear line of working showing substitution of $y = z$ AG All correct (3 'or' become 'and') (ii) $y = \frac{1}{3}x$ oc AI 2 AG All correct (3 'or' become 'and') For all lines must be correct to $\frac{1}{3}$ square horizontal or vertical $x = 190, y = 50$ Horizontal or vertical $x = 190, y = 50$ Through (0.150) and (300.0) through (0.250) and (400.0) $y = mx$ through (0.250) and (400.0) $y = mx$ through (0.250) and (400.0) $y = mx$ through (0.0) through (300.100) Region must have all lines correct and labelled region (condone lack of shading)		$2.5x + 2y + 2z \le 1000$	oe	B1 \		Strict inequalities: penalise first two
(b)(i) $y = z$ $x \ge 190, y \ge 50$ $x + 2y \ge 300 \qquad \text{oe} \qquad \text{M1}$ $5x + 8y \le 2000$ $2x \ge 6y$ $y \le \frac{1}{3}x$ $y = \frac{1}{3}x$ $x =$,				instances only
(b)(i) $y=z$ $x \ge 190, y \ge 50$ $x+2y \ge 300$ oe $x+2y \ge 300$ or $2x \ge 6y$ $y=\frac{1}{3}x$ oe AI 2 AG All correct (3 'or' become 'and') (ii) B1 B1 B1 B1 B1 B1 B1 B1 B1 B		$x \ge \frac{60}{100} \left(x + y + z \right)$	oe	B1)	4	
$x \ge 190, \ y \ge 50$ $x + 2y \ge 300 \qquad \text{oe} \qquad \text{M1}$ $5x + 8y \le 2000$ $2x \ge 6y$ $\left(y \le \frac{1}{3}x\right) \qquad \text{oe} \qquad \text{A1} \qquad 2 \qquad \text{AG All correct (3 'or' become 'and')}$ $\begin{vmatrix} & & & & & & & & & & & \\ & & & & & & & \\ & & & & $		$(2x \ge 3y + 3z)$				
$x + 2y \ge 300 \qquad \text{oe} \qquad \text{M1} \qquad \begin{array}{c} x + y + y \ge 300 \text{ or } 5x + 4y + 4y \le 2000 \\ 5x + 8y \le 2000 \\ 2x \ge 6y \\ \left(y \le \frac{1}{3}x\right) \qquad \text{oe} \qquad \text{A1} \qquad 2 \qquad \text{AG All correct (3 'or' become 'and')} \\ \\ \text{(ii)} \qquad \begin{array}{c} y \\ 300 \\ 250 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ x \\ 81 \\ 100 \\ $	(b)(i)	=				
$5x + 8y \le 2000$ $2x \ge 6y$ $\left(y \le \frac{1}{3}x\right)$ oe A1 2 AG All correct (3 'or' become 'and') 50 0 0 150 0 0 150 0 0 150 0 0 150 0 0 150 0 0 150 0 0 150 0 0 0 150 0 0 0 150 0 0 0 150 0 0 0 0 0 0 0 0 0		$x \ge 190, \ y \ge 50$				
showing substitution of $y=z$ showing substitution of $y=z$ showing substitution of $y=z$ showing substitution of $y=z$ and $y=z$ showing substitution of		$x + 2y \ge 300$	oe	M1		
(ii) $ \begin{cases} 2x \ge 6y \\ y \le \frac{1}{3}x \end{cases} $ oe A1 2 AG All correct (3 'or' become 'and') $ \begin{cases} 2x \ge 6y \\ y \le \frac{1}{3}x \end{cases} $ oe A1 2 AG All correct (3 'or' become 'and') $ \begin{cases} 300 \\ 250 \\ 200 \\ 200 \end{cases} $ Fr. $ \begin{cases} 300 \\ 250 \\ 200 \end{cases} $ For all lines must be correct to $\frac{1}{2}$ square horizontal or vertical $x = 190, y = 50$ through (0,150) and (300,0) through (0,250) and (400,0) $y = mx$ through (0,250) and (400,0) $y = mx$ through (0,250) and (400,0) Region must have all lines correct and labelled region (condone lack of shading) $ \begin{cases} 3x \le 6y \\ y \le \frac{1}{3}x \end{cases} $		$5x + 8y \le 2000$				
(ii)		$2x \ge 6y$				snowing substitution of $y = z$
B1		$\left(y \le \frac{1}{3}x\right)$	oe	A1	2	AG All correct (3 'or' become 'and')
B1	(ii)	<i>y</i> ♦				
B1 B	(11)	300				
B1 B						
For all lines must be correct to $\frac{1}{2}$ square horizontal or vertical $x = 190, y = 50$ B1 through $(0,150)$ and $(300,0)$ through $(0,250)$ and $(400,0)$ $y = mx$ through $(0,0)$ throu		250				
For all lines must be correct to $\frac{1}{2}$ square horizontal or vertical $x = 190, y = 50$ B1 through $(0,150)$ and $(300,0)$ through $(0,250)$ and $(400,0)$ $y = mx$ through $(0,0)$ throu						
For all lines must be correct to $\frac{1}{2}$ square horizontal or vertical $x = 190, y = 50$ B1 through $(0,150)$ and $(300,0)$ through $(0,250)$ and $(400,0)$ $y = mx$ through $(0,0)$ throu		200				
B1 B						
B1 B		150				
From all lines must be correct to $\frac{1}{2}$ square horizontal or vertical $x = 190, y = 50$ B1 through $(0,150)$ and $(300,0)$ through $(0,250)$ and $(400,0)$ $y = mx$ through $(0,0)$ through $(300,100)$ Region must have all lines correct and labelled region (condone lack of shading)		130				
From all lines must be correct to $\frac{1}{2}$ square horizontal or vertical $x = 190, y = 50$ B1 through $(0,150)$ and $(300,0)$ through $(0,250)$ and $(400,0)$ $y = mx$ through $(0,0)$ through $(300,100)$ Region must have all lines correct and labelled region (condone lack of shading)						
For all lines must be correct to $\frac{1}{2}$ square horizontal or vertical $x = 190, y = 50$ through $(0,150)$ and $(300,0)$ through $(0,250)$ and $(400,0)$ $y = mx$ through $(0,0)$ through $(0,0)$ through $(300,100)$ Region must have all lines correct and labelled region (condone lack of shading)		100				
For all lines must be correct to $\frac{1}{2}$ square horizontal or vertical $x = 190, y = 50$ B1 through $(0,150)$ and $(300,0)$ through $(0,250)$ and $(400,0)$ $y = mx$ through $(0,0)$ through $(0,0)$ Region must have all lines correct and labelled region (condone lack of shading)		OL			FR	
For all lines must be correct to $\frac{1}{2}$ square horizontal or vertical $x = 190, y = 50$ B1 through $(0,150)$ and $(300,0)$ through $(0,250)$ and $(400,0)$ $y = mx$ through $(0,0)$ A1 through $(300,100)$ Region must have all lines correct and labelled region (condone lack of shading)		50				
For all lines must be correct to $\frac{1}{2}$ square horizontal or vertical $x = 190, y = 50$ B1 through $(0,150)$ and $(300,0)$ through $(0,250)$ and $(400,0)$ $y = mx$ through $(0,0)$ A1 through $(300,100)$ Region must have all lines correct and labelled region (condone lack of shading)						
For all lines must be correct to $\frac{1}{2}$ square horizontal or vertical $x = 190, y = 50$ B1 through $(0,150)$ and $(300,0)$ through $(0,250)$ and $(400,0)$ $y = mx$ through $(0,0)$ A1 through $(300,100)$ Region must have all lines correct and labelled region (condone lack of shading)		0 50	100 150	200	250	300 350 400 450 x
horizontal or vertical $x = 190, y = 50$ B1 through $(0,150)$ and $(300,0)$ B1 through $(0,250)$ and $(400,0)$ M1 $y = mx$ through $(0,0)$ A1 through $(300,100)$ B1 Region must have all lines correct and labelled region (condone lack of shading)						
B1 $x = 190, y = 50$ B1 through $(0,150)$ and $(300,0)$ B1 through $(0,250)$ and $(400,0)$ M1 $y = mx$ through $(0,0)$ A1 through $(300,100)$ B1 Region must have all lines correct and labelled region (condone lack of shading)						2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				B1		
$\begin{array}{ccc} B1 & \text{through } (0,250) \text{ and } (400,0) \\ M1 & y = mx \text{ through } (0,0) \\ A1 & \text{through } (300,100) \\ B1 & \text{Region must have all lines correct and labelled region (condone lack of shading)} \end{array}$						·
A1 through (300,100) B1 Region must have all lines correct and labelled region (condone lack of shading)				B1		through (0,250) and (400,0)
B1 Region must have all lines correct and labelled region (condone lack of shading)						-
labelled region (condone lack of shading)						
				BI		
				B1	7	

Q	Solution	Marks	Total	Comments
6 (b)(iii)	$P = \frac{1}{2}x + \frac{1}{4}y + \frac{1}{4}z \text{ or } \frac{1}{2}x + \frac{1}{2}y$	M1		PI
	Max at (320,50)	B1		
	Profit $(160 + 25) = £185$	A1		Note: (with no working) £185 3/4
	Buys 320 slow, 50 medium, 50 fast	B1	4	320 slow, 50 medium, 50 fast 2/4 320 slow, 50 medium, 50 fast and £185 4/4
	Total		17	

Q	•		Solu	tion		Marks	Total	Comments
7								
	\boldsymbol{A}	В	C	D	E			
	(1	4	0	4	0)			8
	3	-4	$-\frac{4}{3}$	$\frac{8}{3}$	0.22404	M1		1st pass to candidate's $\frac{8}{3}$
	3	-4		3	444	A1		1st pass all correct to $E = 0.22$
			(awrt	(awrt	(awrt	Ai		1st pass an correct to $L = 0.22$
			-1.33)	2.67)	0.22)	3.61		21
			A	52	0.10671	M1		2nd pass to candidate's $\frac{52}{15}$
	5	4	$\frac{4}{5}$	$\frac{52}{15}$	111	A1		2nd pass correct to $E = 0.11$
			3	(awrt	(awrt			•
				3.5)	0.11)			304
						M1		3rd pass to candidate's $\frac{304}{105}$
	7	_4	_4	$\frac{304}{105}$	0.0599			105
	'	-4	7	105	0.0399			
			(awrt	(awrt	(awrt			
			-0.571)	2.9)	0.06)			
			4	1052				
	9	4	$\frac{4}{9}$	$\frac{1052}{315}$	0.03987			
			(awrt	(awrt	(awrt	A 1		All correct and no extra line
			0.444)	3.34)	0.04)	A1	6	
								Final answer $\frac{1052}{315}$ or awrt 3.34
	π is a	pproxi	imately 3.	34				315
					Total		6	

MIDUI (cont				T ~
Q	Solution	Marks	Total	Comments
8 (a)	Max 5	B1		
	Min 1	B1	2	Do not allow 1° or 5°
(b)	$4x-12 \ge 1 \text{ (or } >0)$			
	$\left(x \ge \frac{13}{4}\right)$			
	$\begin{pmatrix} 4 \end{pmatrix}$			
	Or			
	$4x - 12 \le 5 \text{ (or } < 6)$			
		M1		Any one of these inequalities
	$\left(x \leq \frac{17}{4}\right)$	1111		They one of these mequalities
	Or			OR
	$2x - 4 \le 5 \text{ (or } < 6)$			Exhaustive check of all values from 1 to 5
				inclusive, condone one omission.
	9			
	$x \leq \frac{9}{2}$			
	2 J			
	x = 4	A1	2	First inequality and one of the other two,
	$\lambda = 4$	AI	2	
				or completely correct exhaustive check, and $x = 4$
				and $x = 4$
	Alternative solution			
	Sum of degrees = $11x - 24$ must be even			
	$\Rightarrow x$ is even			
	$x-2>0 \Rightarrow x>2$	M1		
	$x \le 5$			
	Hence $x = 4$	A1		
	Total		4	
	TOTAL		75	
	101.12			

General Certificate of Education (A-level) January 2011

Mathematics

MD01

(Specification 6360)

Decision 1

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01

MD01				
Q	Solution	Marks	Total	Comments
1(a)				
	1 2 3 4 5 6 A 0 0 0 1 1 0	M1		(6×6) matrix labelled with
				, ,
	$B \mid 0 0 1 0 1 1$			some \sqrt{s} or \times 's or 0's or 1's or $-$'s
	$C \mid 0 \mid 0 \mid 0 \mid 1 \mid 0 \mid 0$			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$\begin{bmatrix} E & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$	A 1	2	
	$F \mid 1 0 1 0 1 0$	A1	2	CAO
(b)	4 4 5)			
(b)	A-4+E	M1		1 correct
	A-5+B	IVI 1		1 correct
	C-4+E			
	6-D+2	M1		1 correct, from a different start point
		1411		1 correct, from a different start point
	6-B+5			
	1-F+3			
	A-5+B-3+F-1	A 1		
	A-5+B-3+F-1 C-4+E-2+D-6	A1 A1		Either order
	or	Aı		
	first			
	A-4+E-2+D-6	(4.1)		
		(A1)		
	then			Must be in this order
	C-4+A-5+B-3+F-1	(A1)		
	or			
	first			
	A-5+B-6	(A1)		
	then	(/		Must be in this order
	C-4+E-2+D-6+B-3+F-1	(4.1)		What of in this order
	C - + + E - 2 + D - 0 + D - 3 + F - 1	(A1)		
	M . 1 . 45 . D2 . C4 . D.C . E2 . E1	D.1	_	M 11 11 11 11 11 11 11 11 11 11 11 11 11
	Match A5, B3, C4, D6, E2, F1	B1	5	Must be stated (not solely on diagram)
	Total		7	

MD01 (cont	Solution	Marks	Total	Comments
2(a)	7	B1	Total	A correct pivot (7 or 22)
2(a)	22	B1	2	2 nd correct pivot and no others
4				
(b)	1st 7	B1		
		B1		Condona 7 5 3 or 7 + 5 + 3 (-15)
	2nd 5 3rd 3	B1	3	Condone 7, 5, 3 or $7 + 5 + 3$ (= 15) unlabelled but must be in this order
	310 3	ы	3	diffabelled but flust be in this order
(c)	No – 16, 19 haven't been compared (OE)	E1	1	BOTH "No" (or equiv) AND "16, 19"
				(only) mentioned or highlighted in script
	Total		6	
3(a)(i)	EB (5)	M1		Prim's, MST, 6+ edges (no cycles), edges
	$\mid_{EH}\mid_{7}\mid$			not lengths or vertices, with first 2 edges
				correct
	$AB \mid 8$			
	HI	B1		8 edges
	$AD \mid 10 \mid$	A 1		AD 2.1
	$\mid DG \mid 4 \mid$	A1		AB 3rd
	$\mid EF \mid 12 \mid$	A1	4	All correct
		111		
	FC (6)			
(ii)	61	B1	1	
(11)		D1	-	
(iii)	1 1			
	D E	M1		6+ edges, connected, no cycles
		A1	2	Correct, including labelling
	b # 3	Ai	2	Correct, including labelling
(b)	Delete BA, BE and reconnect with 1 edge	M1		PI from their diagram in (iii)
	or			
	a spanning tree with 7 edges not including			
	B (either as a list or diagram)			
	(61 - 13 + 11) = 59	A1	2	Note: 59 scores 2/2
	(01 - 13 + 11) - 39 Total	AI	9	11000. 37 300103 2/2
	10tai		7	

1 (cont)						
Q	Solution	Marks	Total	Comments		
4(a)(i)	B 9 3 G 12					
	2.5	M1		(2 values at E or F)		
	45	A1		Correct values at E and F		
	A 7.5 C 6 H 6 J	m1		2 values at I		
	0 \	m1		3 values at J		
	10.5	B1		18 at <i>J</i>		
	1.5	A1	6	All correct, condone 0 missing at A,		
	7.5 7.8			with rejected values crossed and final values boxed and no extra values at oth vertices		
(ii)	ADFIJ	B1	1	or reverse		
(b)	7.5 + x < 12 OF	M1		Either correct		
	$16.5 + x \geqslant 18$ OF			condone $7 \cdot 5 + x \le 12$ or $16 \cdot 5 + x > 1$		
		A1		Both correct		
	$1.5 \leqslant x < 4.5$	A1	3	$1.5 \leqslant x < 4.5$ seen (with or without		
		711	3	working) scores 3/3		
				Condone $1.5 \leqslant x$ and $x < 4.5$ or exact		
				equiv in words but must see "and"		
				$1.5 < x \text{ or } 1.5 \leqslant x \text{ or } x < 4.5 \text{ or } x \leqslant$		
				with no working M1A0		
	Tota	al	10			
5(a)	A vertex / vertices of odd order (<i>A</i> , <i>B</i> , <i>G</i> , <i>H</i>) OE	E1	1	Condone statement of non-Eulerian gra		
(b)	AB + GH = (180 + 165) = 345	M1		These 3 correct sets of pairs		
	AG + BH = (90 + 210) = 300			_		
	AH + BG = (150 + 210) = 360	A2,1		3 correct totals, 2 correct totals		
	Dist 1215 + 300 PI	M1	_	1215 + their smallest		
	= 1515	A1	5	CSO		
(c)(i)	3	B1	1			

B1

Total

(ii)

MD01	(cont)
	COMU

					T
Q	Solution		Marks	Total	Comments
6(a)(i)	10		B1	1	
			7.1	_	
(ii) 4	4		B1	1	
(***)	~		D1	1	
(iii)	5		B1	1	
(b) e	aσ				
	eg				
			M1		Simple graph, 6 vertices
					See Pro See Pro, o versees
			A1	2	Eulerian graph with 9 edges
	V				
		Total		5	
7(a) 3	33		B1	1	
	DAEDCD		N/I 1		Tour that visits all vertices
(b) I	BAEDCB		M1 A1		Correct tour
	= 41		B1	3	Correct tour
	– 41		Di	3	
(c)	A (3) B				Spanning tree without C
	X 4)				(either drawn or edges listed)
	((0)		M1		and
	E D				2 different edges from <i>C</i>
					(either drawn or edges listed)
	1				
			A1		C AMOT
			AI		Correct MST
	D				
	(11)				
	(5)		A1		Correct 2 edges from C
					Concer 2 eages from C
	Č		_		
	=	= 33	B1	4	
	A				
(d)					
	\ /				
	E		M1		Correct network
					Possibly earned in (c)
	Č				
	Optimal	OE	A1	2	
		Total		10	

Q		Solution		Marks	Total	Comments
8(a)						
	X	\boldsymbol{A}	В			
	0					Condone omission of $X = 0$, $A = 20$, $B =$
		20	8			
		10				
			16	M1		SCA Trace as far as their '10' at A and
		5				their '16' at B, ignore values in X column
			32	A1		All correct up to and including 32 at B
	32					
		2				
			64	A1		All correct up to and including 64 at B
		1				
			128			
	160			A1	4	All correct and no further working
	("160")					
(b)	Multiplication		OE	B1	1	
(-)	.					
(c)	Continuous loc	р	OE	E1		
	as never reach	•	OE	E1	2	
			Total		7	

MD01 (cont)				
Q	Solution	Marks	Total	Comments
9(a)	$6x + 9y + 9z \le 600$	M1		Any of the three inequalities correct
	2 + 2 + 2 < 200			(un)simplified, condone strict inequalities
	$2x + 3y + 3z \le 200$	A1		CAO
	$9x + 6y + 9z \le 600$			
	$3x + 2y + 3z \le 200$ $3x + 2y + 3z \le 200$	A 1		CAO
	$3\lambda + 2y + 3\zeta \le 200$	A1		CAO
	$6x + 12y + 18z \ge 480$			
	$x + 2y + 3z \ge 80$	A1	4	CAO
	,			
(b)(i)	(z=y)			
	$2x + 3y + 3y \le 200$ or $2x + 6y \le 200$	M1		Correctly substitute into this inequality -
	. 2 . 4100			either simplified or unsimplified form
	$x + 3y \le 100 $ AG			
	$3x + 2y + 3z \le 200$			Correctly substitute into this inequality -
	3x + 2y + 32 \(\text{\tinz}\text{\tinx{\tint{\text{\text{\text{\text{\tint{\text{\tint{\text{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\tint{\tinit}}}\\ \text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\tint{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\tint{\tint{\tint{\tint{\tint{\text{\tint{\tint{\tint{\tint{\tex{\tinit{\text{\tinit{\text{\tinit{\text{\text{\tinit{\text{\tinit}\\ \tint{\text{\tinit{\text{\tinit{\tinit{\text{\tinit{\text{\tinit{\tinit{\tinit{\text{\tinit{\tinit{\tinit{\text{\tinit{\tinit{\tinit{\tinit{\tinit{\text{\tinit{\tiin}\tinit{\tiit{\tinit{\tiit{\tinit{\tiin}\tiit{\tiin}\tiint{\tiin}\tinit{\tiin}\tiint{\tiit{\tiinit{\tiit{\tiit{\tiinit{\tiii}\tiit{\tiit{\tiit{\tiit{\tiit{\tiit{\tiiit{\tiitit{\tiii}\tiinit{\tiit{\tiii}\tiit{\tii			either simplified or unsimplified form
	$(\Rightarrow) 3x + 5y \le 200$ AG			1
	$x + 2y + 3z \ge 80$			Correctly substitute into this inequality -
				either simplified or unsimplified form
	$(\Rightarrow) x + 5y \ge 80$ AG	A1	2	All correct – must link their original
	(\rightarrow) $x + 3y = 00$	711	2	inequality to the stated answers
(ii)	Each line must be straight to have the B ma			
	For all lines, must be correct to ½ square ho	orizontal ai 	nd vertica	at the indicated vertices.
	50	B1		Line through (10, 30) and (40, 20)
	40			
		B1		Line through (50, 10) and (0, 40)
	30-	D1		Line through (90, 0) and (0, 16)
	20 FR	B1		Line through (80, 0) and (0, 16)
		B1	4	FR, must have all lines correct
	10			and labelled region (condone no shading)
	0 20 40 60 80 100 120 x			
(iii)	Max x + 2y PI	M1		If no statement (PI), then check OL on
	14 (25 . 50) . 55		•	diagram, which must be correct for M1
	Max (= 25 + 50) = 75	A1	2	Note: 75 with no working 2/2
(iv)	25 basic, 25 standard, 25 luxury	B1F	1	Condone "25 of each type" ONLY if
(-1)	,		-	(b)(iii) fully correct
				Note $x = 25 = y = z$ B0
	Total		13	
	TOTAL		75	

General Certificate of Education (A-level)
June 2011

Mathematics

MD01

(Specification 6360)

Decision 1

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
−x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01

MD01 Q	Solution	Marks	Total	Comments
1(a)	A - 1			
1(a)				
	$B \longrightarrow 2$			
	c	M1		Bipartite graph, 2 sets of 6 vertices
				with 10+ edges
	$D \leftarrow 4$	A1	2	Correct including labelling
		Aı	2	Correct including labelling
	$E \longrightarrow 5$			
	F• 6			
(b)	$\begin{bmatrix} E-5+D \end{bmatrix}$			
	E-3+A			
	F-5+D	M1		1 correct
	F-5+E			
	$\begin{vmatrix} 1-A+3 \end{vmatrix}$	M1		1 correct, from a different starting point
	$\begin{vmatrix} 1-B+2 \\ 6-B+1 \end{vmatrix}$	1,11		rome w directors summing point
	$\begin{bmatrix} 6-B+1 \\ 6-B+2 \end{bmatrix}$			
	$ \begin{bmatrix} E-3+A-1 \\ F-5+D-2+B-6 \end{bmatrix} $	A1 A1		Either order
				Must be listed, not simply shown on
	Match A1, B6, C4, D2, E3, F5	B1	5	diagram
	or first			
	E-5+D-2+B-1	(A1)		
	then			Must be in this order
	F-5+E-3+A-1+B-6	(A1)		
		()		
	or first			
	$\begin{array}{c} \text{HIST} \\ E - 5 + D - 2 + B - 6 \end{array}$	(A1)		
	then			Must be in this order
	F-5 + E-3 + A-1	(A1)		nado de in uno order
	,	(A1)		
	or			
	first $F - 5 + D - 2 + B - 1$	(A1)		
	then $ F - 3 + D - 2 + B - 1 $	(A1)		Must be in this and an
	E-3+A-1+B-6			Must be in this order
		(A1)	7	
	Total		1	

MIDUI (COIIL	·)			
Q	Solution	Marks	Total	Comments
2(a)(i)	<i>x</i> < 6	B1	1	Condone $x \le 5$
(ii)	x < 4	B1	1	$x \leq 3$
(b)(i)	x < 11	B1	1	$x \le 10$
	_			
(ii)	x > 2	B1	1	$x \ge 3$ Condone $2 < x < 11$
	2	3.54		
(c)	x = 3	M1	•	Their max (b)(ii) $< x <$ their min (a)
		A1	2	CSO
	Total		6	
3(a)(i)	AC			
<i>S(u)(1)</i>	CH	M1		Prim's, ST, 5+ edges (no cycles), edges
	FH			not lengths or vertices, with first 4 edges
	CE			correct
	CD (or ED)			
	GH (GLZE)	B1		7 edges
	DB	A 1		CD (ED) 511
		A1		CD (or ED) 5th
		A1	4	All correct
		711	-	7 Hi correct
(ii)	$A \qquad C \qquad E$			
				CD, ED either of these lines
	100			
		M1		ST with 5+ edges, connected, no cycles
	$F \longleftarrow H$		_	
		A1	2	Correct, including labelling
	1961			
	Ġ B			
	1 - 0 - 0 - 1 - 1 - 1			
(iii)	75(p)	B1	1	
	**			
(b)	Delete CH, HG, HF and add FA and one	N // 1		Deleting their edges connected to <i>H</i> , and
	of GC, GA, GD, GF	M1		adding edges to make a ST with 6 edges
	or			
	a ST with 6 edges not including H (either			
	as a list or a diagram)			
	70(p)	A1	2	Note: 70 scores 2/2
	Total		9	

Q Q	Solution	Marks	Total	Comments
4(a)(i)	7 7 7 7 14 13 4 E 18 17 10 5 10 5 10 5 10 7 10 8 R 3 B 18 16	M1 A1 m1 A1		2+ values at <i>S</i> or <i>R</i> or <i>T</i> Correct values at <i>S</i> 2 values at <i>E</i> and 2 values at <i>B</i> 3 values at <i>D</i> All correct, condone 0 missing at <i>A</i> , with rejected values crossed and final values boxed and no extra values at other vertices
	13	B1	6	22 is final value at <i>D</i> (value on diagram overrides value in script)
(ii)	Route OFSTED	B1	1	Or reverse
(b)(i)	16	B1	1	
(ii)	OFSRB	B1	1	Or reverse
	Total		9	
5(a)	$AC + FD \ (= 14 + 18) = 32$	M1		These 3 correct sets of pairs, letters not numbers
	$AF + CD \ (= 10 + 26) = 36$	A2,1		3 correct totals, 2 correct totals
	AD + CF = 26 + 24 = 50			Condone 26 + 24 not evaluated if statement of "too big" OE
	min = 150 + 32	m1		150 + their smallest, PI
	= 182	Alcso	5	
(b)	Repeat FD	M1		PI 182 – AC
	(=150+18)=168	A1	2	168 unsupported scores 2/2
(c)(i)	Repeat AF	M1		PI
	(=150+10)=160	A1	2	160 unsupported scores 2/2
(ii)	(Start/finish) C and D Total	B1	1 10	Must have both and only these
	1 Utai	l	10	

Q			Solution	1		Marks	Total	Comments	
6(a)	A	В	C	D	E				
0(4)	6								
		7	300						
				6.5	25.375				
	6.5			6.75					
		6.75		6.75	-7.547	M1		Trace as far as 2 values for <i>D</i> and <i>E</i> Condone omission of 6, 7, 300	
	6.625	6.625			6.625	9.22	A1		6.5 at A, 6.75 at D
				6.6875	0.92	m1		At least 4 values for D and E	
						A1	4	All correct including sight of 6, 7, 300, with AWRT correct to 3sf or better	
(b)	1 st reaso	n: No ou	ıtput			E1		OE	
	2 nd reaso	n: Need	l to know	an inter	val	E2,1	3	OE	
	within w	hich the	cube roo	ot lies at	the			For E2, must be a general statement	
	outset							For E1, a statement only referring to 6, 7 or 300	
					Total		7		

O O	Solution	Marks	Total	Comments
7(a)	$x+5y \geqslant 25$ OE	B1		ISW
	$2x+15y \geqslant 60$ OE	B1		ISW
	$x + 25y \geqslant 40$ OE	B1		ISW
	(C =) 2.5x + 15y	B1	4	ISW; condone $250x + 1500y$, but not any other multiples
(b)(i)	y 4 5			Note: all points need to be correct to within half a square horizontally and vertically
		B1		Line through (0, 5) and (25, 0)
	3	B1		Line through (0, 4) and (30, 0)
	FR	B1		Line through (15, 1) and (30, 0.4)
		B1		FR, must have all lines correct and labelled region (condone no shading)
	0 5 10 15 20 25 30 x	M1		Objective line drawn, gradient of $-\frac{1}{6}$ or -6
		A1	6	Gradient = $-\frac{1}{6}$
(ii)	15 DIY, 2 trade	B1	1	
(iii)	(Cost) £67.50	B1	1	Condone 6750p, £67.5
, ,	Total		12	•

Q Q	Solution	Marks	Total	Comments
8(a)(i)	P U S R (= 40)	E1		2 2 3 30
	Less than any other route	E1	2	Or any one of $PQR = 50$, $PUQR = 45$, $PUR = 44$, $PUTSR = 54$ etc stated
(ii) (b)(i)	P Q R S T U P - 25 40 24 26 14 Q 25 - 20 21 23 11 R 40 20 - 16 28 26 S 24 21 16 - 12 10 T 26 23 28 12 - 12 U 14 11 26 10 12 -	B1 B1 M1	2	6+ correct either above or below diagonal All correct Tour visiting vertices once only (except
	= 119 (min)	m1 A1 B1	4	start/finish vertex) Visits all vertices Correct order
(ii)	$Q\ U\ S\ T\ U\ P\ U\ S\ R\ Q$	M1 A1	2	Any "expansion" of <i>TP</i> or <i>PR</i> from their (b)(i), PI
(c)	U R S	M1		ST without Q (either drawn (vertices labelled) or edges listed) and 2 different edges from Q (either drawn (vertices labelled) or edges listed)
	T	A1		either UT or TS in correct MST
	1	В1		4 edges in a labelled ST (must not include Q)
	R_{\bullet} U	A1		Correct 2 edges from Q
	Q		_	
	= 83	B1	5	
	Total TOTAL		15 75	
	TOTAL		75	

General Certificate of Education (A-level) January 2012

Mathematics

MD01

(Specification 6360)

Decision 1

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
−x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01

Q				Solu	ıtion				Marks	Total	Comments
1	37	25	16	12	36	24	13	11			
	_	~	×	•	_	~	×	•			
	36	2.4			37	2.5			3.64		
		24	13			25	16		M1		Using 4 sets of 2
				11				12			
	36	24	13	11	37	25	16	12	A1		Must see this line
	_	×		×		×		×			
	13	11	16	12	36	24	37	25	m1		Using 2 sets of 4
	13	11	16	12	36	24	37	25	A1		Must see this line
	11	12	13	16	24	25	36	37	A1	5	All correct
								Total		5	
2(a)	DATE:							Total	3.61		Di di 1.2 de 66 di
	1		_						M1		Bipartite graph, 2 sets of 6 vertices, at least 10 edges
	$B \leftarrow$	1	1		\geq	\prec	_	→ 2			
	-	1	X				/				
	c <	_	//	1)	/			3			
		1	\approx		1				A1	2	Correct, including labels
	D eq				1	1		• 4			
			\	1	/	1	11				
	<i>E</i> ←	_			1	1	1	5			
	23				_	_	7				
	<i>F</i> •							6			
(b)	<i>F</i> ∴ <i>E</i>			vith 6	(E1		
	<i>E</i> ∴ <i>B</i>								E1		
	∴ A &				1		4 1.		E1	3	Include conclusion
	Impos alloca					canno	ot be		L1	,	
											Or E1 3 must be with D (generous) E1 4 " " D (generous)
											E1 Impossible as <i>D</i> cannot do both 3
								Total		5	and 4 (strict)

MD01 (cont) Q	Solution	Marks	Total	Comments
3(a)	$ED = \begin{pmatrix} 6 \end{pmatrix}$	M1	Total	Kruskal, must have first 2 edges correct &
(u)	$AC = \begin{bmatrix} 8 \\ 8 \end{bmatrix}$			no cycles
	$AD = \begin{bmatrix} 0 \\ 10 \end{bmatrix}$			(edges not lengths must be seen)
	or	A1		AD or CD third edge
	$DC = \begin{bmatrix} 10 \end{bmatrix}$	711		71D of CD third edge
	$FG = \begin{bmatrix} 10 \\ 11 \end{bmatrix}$			
	$BE = \begin{bmatrix} 11 \\ 12 \end{bmatrix}$	A1		BE 5th edge
	$CF = \begin{pmatrix} 12 \\ 16 \end{pmatrix}$	B1		6 edges
	$CF = \begin{pmatrix} 10 \end{pmatrix}$	A1	5	All correct
a >	(2)	D1	4	
(b)	63	B1	1	
(c)	$B \leftarrow E$			
		M1		Spanning tree with 5+ edges
	$A \leftarrow D$			
		A1		Correct including labelling
	C F			
	A D G	A1	3	Correct including labelling on a separate diagram
	Total		9	
4 (a)	CE + KH = (35 + 24) = 59	M1		These 2 correct sets of rains
	CK + EH = (25 + 40) = 65	M1 A2,1		These 3 correct sets of pairs 3 correct totals, 2 correct totals
	CH + EK = (25 + 30) = 55	, -		
	Total = $224 + 55$ PI by their '279'	M1		224 + their smallest of three pair totals
	= 279	A1	5	CSO including totals seen
(b)	3	B1	1	
	Total		6	

Q	Solution	Marks	Total	Comments
5(a)	50 Solution 1			Each line must be straight to have the B mark available. For all lines, must be correct to ½ square horizontal and vertical at the indicated vertices.
	40	B1 B1 B1		y = 20 line through (4,40) and (16,10) line through (0,25) and (10,15)
	30 20 FR	M1		any line through origin (or if extended, through the origin) with positive gradient (generous ± 1 square at the origin)
	10	A1		lines through (10,20) and (10,40) as well as origin (normal accuracy rules)
	0 10 20 x	B1	6	FR, all lines correct and region labelled (condone no shading, ignore 'poor' shading)
(b)(i)	(Min at) $x = 5$, $y = 20$	B1		Accept (5, 20)
	(Min at) $x = 5$, $y = 20$ (P =) 45	B1		
(ii)	(Min at) $x = 10, y = 20$	B1		Accept (10, 20)
	(P =) 10	B1	4	
	Total		10	

Q	Solution	Marks	Total	Comments
6(a)	40			
	28 48 C ₄₈ 47	M1		SCA, 2 values at C or D
	9 10	A1		Correct values at D
	D 39 37	m1		4 values at F
	55 45	m1		2 values at G or H
	56	m1		2 values at I
	8			Each m1 depends only on the M1
	83 E 54 10 10 10 10 10 10 10 10 10 10	A1		All correct, condone 0 missing at <i>A</i> , with rejected values crossed and final values boxed and no extra values at other vertices.
	J 149 145	B1	7	145 at <i>J</i>
(b)	Route: $A B E F G H I J$	B1	1	Or reverse
(c)	'their 135' – ($28 + GJ$) GJ may be in terms of letters or numbers	M1		or replace their BG in terms of letters or numbers eg $55 + 8 + 10 = 73$, then 'their $73' - 10 =$
				or $BG = AG - 10 - 28$ eg BG = 'their 101' - 10 - 28
	= 63	A1		Note: 63 with no working seen scores 2/2
	Route: A B G H I J	B1	3	Or reverse
	Total		11	

Q	Solution	Marks	Total	Comments
7(a)	A B C D E F G A B 7 13 4 - 10 19 F G 10 19	B1 B1	2	5 correct values in an E 'line' All correct
(b)(i)	BADEFGCB 80	M1 A1 A1 B1	4	Tour visiting at least 6 vertices Visits all 7 vertices Correct order from <i>B</i>
(ii)	$BADEFG\underline{E}C\underline{A}B$	M1 A1	2	Expansion of GC or CB Both correct
(iii)	76	B1F	1	Minimum of 76 and their (b)(i)
(c)(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1		Use of matrix form, 4+ numbers circled and 4+ parallel 'lines' crossed out C added 4th
	B 2 - 8 3 15 26 C 6 8 - 10 23 32 D - 4 3 10 - 12 23 F 16 15 23 12 - 20 G 27 26 32 23 20	B1 A1		Any 5 values 'circled' All correct values circled and lines crossed out, either as shown or as mirror image. Order of vertices must be clearly shown. Condone omission of line at <i>G</i> .
(ii)	43 43 + (4+7) = 54	B1 M1 A1	3	For 43 seen, or for $2 + 6 + 3 + 12 + 20$ Their 43 + 2 different edges from E SC 54 with no working 2/3
(iii)	64	B1	1	
(d)	$64_{1} \leq_{1} T \leq 76$ Total	B1B1	2 19	Must be written in symbols

Q	Solution	Marks	Total	Comments
8(a)	2x+3>0	M1		Any of these seen
	$ \begin{vmatrix} 3x - 5 > 0 \\ x + 1 > 0 \\ 4x - 13 > 0 \end{vmatrix} $			Candidates may use ≥1 instead of >0
	$x > \frac{13}{4} \text{ or } \ge \frac{14}{4}$ (Integer) so $x \ge 4$	A1	2	Must see both lines. Ignore further work on other inequalities. Accept 4.6 or 4.7 AWRT
(b)(i)	2x+3 > 3x-5	M1		Any correct ISW, condone use of \geq
(")()	> x + 1	A1		2nd correct ISW
	> 4x - 13	A1	3	All correct ISW
(ii)	3x-5>x+1 $>4x-13$	M1 A1	2	Either correct ISW, condone use of ≥ Both correct ISW
(iii)	x+1 > 4x-13	B1	1	ISW
(c)	$\frac{13}{4} < x < \frac{14}{3}$	M1		Or $4 \le x < \frac{14}{3}$, condone $3 < x < \frac{14}{3}$
	<i>x</i> = 4	A1	2	(Ignore all other inequalities) Must have scored 9/9 earlier
				SC $x < \frac{14}{3}$: $x = 4 \cdot 1/2$
	Total		10	
	TOTAL		75	

General Certificate of Education (A-level) June 2012

Mathematics

MD01

(Specification 6360)

Decision 1

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
−x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q				Soluti	on			Marks	Total	Comments
1(a)	A B C	1 0 1 0	2 0 0 0	3 1 0 1	4 0 1 0	5 0 0	6 0 0 1	M1		6×6 matrix labelled with some 0, 1, \checkmark , \checkmark 's (at least 9 entries)
	D E F	1 0 0	1 0 0	0 0 0	0 1 0	0 1 1	0 0 1	A1	2	All correct
(b)	A-3 or $2-L$							M1		
	or						+D-2 +3-A	A1		
	Matc	h A3	, <i>B</i> 1, <i>C</i>	C6, D2	2, <i>E</i> 4,	F5		B1	3	
							Total		5	
2(a)	1st 2nd 3rd	$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$						B2 (B1)	2	All correct 2 correct
(b)	1st 2nd	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$						B2	2	All correct
(a)	3rd	0 J	ohoo!r	22 (or	nd 26)			(B1) E1	2	2 correct No. (et leget) one more pass peeded etc.
(c)	1NO, II	ias to	спеск	23 (ar	iu 20)		Total	EI	5	No, (at least) one more pass needed etc

Q	Solution	Marks	Total	Comments
3(a)(i)	$ \begin{array}{c c} AD & 4 \\ AB & 6 \end{array} $	M1		Using Prims, first 3 edges correct, 6+ edges, no cycles, must have edges not
	AC 16 DE 19 EG 10	B1		lengths 8 edges
	GI 12 IH 13	A1		GI 6 th
	<i>IF</i>	A1	4	All correct
(ii)	97	B1	1	
(iii)	$\nearrow B$ F	M1		ST with 6+ edges
	$A \stackrel{D}{\longleftarrow} E \stackrel{G}{\longrightarrow} I$	A1	2	All correct including labels
	C H			
(b)(i)	IF	B1	1	
(ii)	AC	B1	1	
	Total		9	
4(a)(i)	B 6 3433 G	M1		Dijkstra, $2+$ values at C and 1 value at B and D
	10 1817 16 24 29 44 43 0 10 9 8 39 C E F H	A1		Sight of 10, 9, 8 (only) at <i>C</i>
		m1		3 values at E and 2 values at G or I
	$V_{\overline{7}}$ D $36\overline{35}$ I	A1		All correct, including crossing out, boxing (condone omission of 0 at <i>A</i>)
		B1	5	39 at <i>J</i> (final value)
(ii)	Route A D C E F H I J	B1	1	or reverse
(b)	(Time = 39 min)			
	(Dist =) $\frac{their 39}{60} \times 90$ OE	M1		
	= 58.5 km CAO	A1	2	Must see km, or 58500 m SC 58.5 with no working scores M1A0, but 58.5 km with no working scores 2/2
	Total		8	

Q	Solution	Marks	Total	Comments
5(a)	BD+FH = 210+210 = 420 BF+DH = 200+180 = 380	M1		These 3 sets of pairs
	$BH+DF = \begin{bmatrix} 200+180 \\ 260+340 \end{bmatrix} = 500$	A2,1		3 correct totals, 2 correct totals
	(MIN) = 2430 + 380	m1		2430 + their smallest of three pair totals
	= 2810	A1	5	CSO
(b)	2430 + 340 (DF) = 2770	B1F	1	2430 + their <i>DF</i>
(c)(i)	2430 + 180 (DH) = 2610	B1F	1	2430 + their min (must have scored M1)
(ii)	B, F only	B1	1	
	Total		8	
6(a)		E1	1	
(b)(i)	28	B1		
(ii)	Odd number of edges at (all) vertices	E1	2	Must see the word odd, not just 7
(c)(i)	$\frac{n(n-1)}{2}$ OE	B1		
(ii)	n-1	B1		
(iii)	n must be odd	E1		Must have <i>n</i> in their answer
(iv)	n = 3	B1	4	Must have <i>n</i> in their answer
	Total		7	

Q	Solution	Marks	Total	Comments
7(a)	$ \begin{pmatrix} A & C & F & D & E & B & A \\ 10 & 31 & 32 & 11 & 18 & 16 \end{pmatrix} $			
	= 118	B1	1	
(b)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 m1 A1 B1	4	Tour from A visiting at least 4 vertices Visits all vertices Correct order from A
(c)	$ \begin{array}{c cccc} \hline (18) & E & \boxed{11} & D & \boxed{14} \\ B & & & & & & \\ \hline (31) & & & & & \\ \end{array} $	M1		Spanning tree + 2 different edges from <i>A</i> (ST must be edges using <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i> not lengths, but condone two lengths from <i>A</i> , or 26) Diagram is not necessary in part (c)
	$_{F}ackslash$	A1		Correct minimum spanning tree
	$ \begin{array}{c} B \\ \hline \begin{bmatrix} 16 \end{bmatrix} \\ A \end{array} $	A1		Correct edges (not lengths) from A
	= 100	B1	4	
(d)	B E D C F	B1		Correctly labelled diagram
	Lower bound does not make a cycle OE AND tour > 100	E1	2	Both, must be strict inequality
	Total		11	

Q		Solution	n		Marks	Total	Comments
8 (a)	A B	C	D				
	1 1	1	1				
		1	2				
	2	2					
	3	6	2.5		M1 A1		At least 3 evaluated values for D 3 rd value of D as 2.5
	4	U	2.67	AWRT			
		24	2.71	AWRT	B1 m1 A1		Values of (1), 1, 2, 6, 24 (only) seen for <i>C</i> Exactly 5 evaluated values for <i>D</i> Correct 5 values for <i>D</i>
	An estimate	of e is 2.71	AWRT	Γ	A1 CSO	6	All correct values seen (1 for <i>A</i> , 4 for <i>B</i> , 5 for <i>C</i> and <i>D</i>) and correct final statement
(b)	Never-endir $(A,)$ $B(,C)$		et to 1	DЕ	B2,1	2	
				Total		8	

Q	Solution	Marks	Total	Comments
9(a)	$x \ge 100, \ y \ge 200$ $x + y + z \ge 400$ OE	В1		
	$4x + 3y + 4z \le 1800$ OE	B1		
	$y \ge \frac{40}{100} \left(x + y + z \right) \text{OE}$	B1	3	
(b)(i)	(x=2z)			
	$x + y + \frac{1}{2}x \ge 400$ $\Rightarrow 3x + 2y \ge 800$	M1		Correct substitution and fully simplifying 1 inequality (must see evidence: either replacing z or multiplying inequality)
	$ 4x + 3y + 2x \le 1800 6x + 3y \le 1800 2x + y \le 600 $	A1		As above 'in 2 nd inequality'
	$5y \ge 2x + 2y + x$ $3y \ge 3x$ $y \ge x$	A1	3	As above 'in 3 rd inequality'
(ii)				Each line must be straight to have the B mark available. For all lines, must be correct to half square horizontal and vertical at the indicated vertices.
	500	B1		x = 100, y = 200
	400 Max (100,400)	B1		y = x line through (100, 100) and (200, 200)
	300 FR	B1		2x + y = 600 line through (100, 400) and (200, 200)
	100	B1		3x + 2y = 800 line through (100, 250) and (200, 100)
	0 100 200 300	B1	5	Feasible Region, all lines correct and region labelled (condone no shading, ignore 'poor' shading)
(iii)	(Max) $y + \frac{3}{2}X$	M1		PI by objective line with gradient –1.5
	(=400+150)=550	A1	2	
(iv)	Buys 100 soft 400 medium 50 firm	В1	1	
	Total		14	
	TOTAL		75	

General Certificate of Education (A-level) January 2013

Mathematics

MD01

(Specification 6360)

Decision 1

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
−x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Marks	Total	Comments
(1)(a)	$A \longrightarrow 1$ $B \longrightarrow 2$	M1		Bipartite graph, 2 sets of 5 vertices, at least 9 edges
	D 3	A1	2	All correct, including labelling
(b)	Only E can do task 1 and task 3. One person cannot do 2 tasks so	M1	2	
	impossible.	A1		
	Or			
	A does 5, then			
	B must do task 4 and D must do task 4.	(M1)		Must have A to 5 first, or 3 people A, B, D can only do 2 tasks 4, 5
	One task cannot be done by 2 people so impossible.	(A1)		Not enough tasks for the number of people so impossible.
	Or			
	4 people <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> can only do 3 tasks 2, 4, 5	(M1)		
	Not enough tasks for the number of people so impossible.	(A1)		
	Total		4	

Q				Sol	lution	l			Marks	Total	Comments
2 (a)	7	8	1	6	3	4	5	2			
	X	_	0	~	X	_	0	~			
	7				3				M1		4 sets of 2 with evidence of at least 1 pair
		8				4	_				being compared
			1				5				
	_	4	1	6	7	0	~	2	A 1		
	3	4	1	2	7	8	5	6	A1		Must see this line
	3	X	- 1	X	_ 7	X	- 5	X			
	3	4	1	2		Q	_	6	m1		2 sets of 4 with evidence of at least 1 set
	1	2	3	<u> </u>	5	6	7	8	1111		being compared
	1	2 2	3	4	5 5	6	7	8			being compared
	_	_		•		J	,	O	A1	4	All correct, including third pass
											(ignore extra 'lines' of working)
(b)	4								B1	1	
								Total		5	
3(a)	(Odo										
			37.2								
			= 38.4	4					M1		These 3 pairs of odds stated
	BH+	DF :	= 40						A2,1		3 correct totals, 2 correct totals
	т	ı1 1	10 . /	27.2					1		110 . 4 . 6 . 11 . 4 . 11 . 1 . 6 . 1
	Leng	gtn 1	18 + 3	31.2					m1		118 + their 'smallest' PI by their final answer
		_ 1	155.2						A1	5	CSO, including 3 correct totals.
		_ 1	133.2						AI	3	CSO, including 3 correct totals.
(b)(i)	E tv	vice							B1		
(ii)	I tw								B1	2	
(-2)										_	
								Total		7	
	•										

Q	Solution	Marks	Total	Comments
4(a)(i)	AB (6.1) BC (7.4) BE 9.7	M1		Prim's, 1st 3 correct, must be edges not lengths and no cycles
	DE 7.2	B1		8 edges
	EF 10.6 12.5	A1		EF 5th
	$ \begin{array}{c c} HI & 6.7 \\ GH & 8.9 \end{array} $	A1		All correct
(ii)	(Length =) 69.1	B1		
(iii)	$A \xrightarrow{B} C$	M1		Spanning tree with 9 vertices and 8 edges
	$D \xrightarrow{E} F$ $G \xrightarrow{H} I$	A1	7	All correct, including labelling
(b)(i) (ii)	GH EF	B1 B1	2	
(c)(i) (ii)	1st <i>AB</i> Last <i>EH</i>	B1 B1	2	
	Total		11	

5(a)				
	60			Accuracy: All lines must be ruled, correct to within ½ small square both horizontally and vertically
	50	B1		x = 15, y = 20
	40	B1		x + y = 60,
	30 F.R.	B1		correct at (10, 50) and (40, 20) 2x + y = 80, correct at (15, 50) and (30, 20)
	20	B1		y = x,
	10 10 20 30 40 50 60 x	B1	5	F.R. (a pentagon) labelled, must have scored previous 4 marks
(ii)	(Max at) (15,45) (P =) 195 Sight of $(26 - 27, 26 - 27)$ (P =) 130 - 135 (P =) $\frac{400}{3}$	B1 B1 B1 M1	2	oe
			10	
	Total		10	

Q	Solution	Marks	Total	Comments
6(a)		M1		Using Dijkstra, 2 or 3 values at C and one value only at both B and D
	B 7 22 20 G	A1		Correct values at C
		m1		2 values at G, H, I
	17 E	m1		4 values at J
	6	A1		All correct, including cancelling and boxing. (condone omission of 0 at <i>A</i>)
	12 20 H 35 32 19 19 35 32 37 30 18 18 18 18 18 18 18 18 18 18 18 18 18	B1		Final value at <i>J</i> is 30.
	Route 222			
	ABCFIJ	B1	7	Or reverse
(b)	From (a) $\frac{\text{'their'}30}{50} (\times 60) = 36 \text{ (mins)}$ (or 0.6 (hrs))	M1		Attempt at finding EITHER time (PI by answer)
	Direct $\frac{35}{60}$ (× 60) = 35 (mins) (or 0.58 AWRT (hrs))	A1F		Both correct (oe)
	Min time = 35 mins (or 0.583 hrs or 7/12 hrs)	B1	3	Must see units
7(a)(i)	Total 7	B1	10	
(ii)	28	B1	2	
(b)(i)	n-1	B1		
(ii)	n(n-1)	B1	2	oe,
	2			
(c)(i)	(d =) 0,1,2,3,4,5	B2		B1 for at least 0,1,5 or B1 for at least 2,3,4
(ii)	(<i>d</i> =) 2,3,4,5	B1		2 1 101 40 10400 2,0,1
(iii)	(d =) 2,4	B1	4	
	Total		8	

Q	Solution	Marks	Total	Comments
8 (a)	58	B1	1	
(b)	EACDBE	B1	1	Or reverse
(c)	E A B D C E (8 10 15 10 23) = 66	M1 m1 A1 A1 CSO	4	Tour Visit all vertices Correct order If M0 scored, then 66 scores SC2
(d)	$\begin{bmatrix} AB \\ BD \\ DC \end{bmatrix} (35)$	M1		A spanning tree with 3 edges connecting <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> and 2 edges from <i>E</i>
		A1		Correct mst
	$\begin{bmatrix} EA \\ EB \end{bmatrix} (17 = 52)$	A1		Correct edges from E
	52	A1 CSO	4	If M0 scored, then 52 scores SC2
(e)	E A B D	B1		
	Doesn't give a tour	E1	2	Or other sensible conclusion Eg: tour > 52 or 'doesn't give a solution'

Q	Solution	Marks	Total	Comments
9	$ 2x+3y+5z \le 400 3x+4y+3z \le 400 $	B1		Both
	$(6x + 2y + 2z \le 400)$			
	$\Rightarrow 3x + y + z \le 200$	B1		
	$11x + 9y + 10z \ge 1000$	B1		
	their $(2x + 3y + 5z)$ > their $(3x + 4y + 3z)$	M1		Condone ≥
	2z > x + y	A1 CAO		oe
	$6x + 2y + 2z \le \frac{4}{10} (11x + 9y + 10z)$	M1		Condone < Allow numerical values to $\frac{4}{10}$
	$16x - 16y - 20z \le 0$ oe	A1		
	$4x \le 4y + 5z$	A1 CAO	8	
	Total		8	
	TOTAL		75	

General Certificate of Education (A-level) June 2013

Mathematics

MD01

(Specification 6360)

Decision 1

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
−x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Marks	Total	Comments
1	A B 2	M1		Bipartite graph, 2 sets of 6 vertices, at least 12 edges
	D 4 4 5 5 6	A1	2	All correct including labelling
(b)	(Missing $A, F / 4, 6$) A - 1 + B or $A - 3 + CF - 1 + B$ or $F - 3 + C$	M1 M1		or $4 - B + 1$ or $4 - D + 5$ $6 - E + 2$ or $6 - D + 5$
	Correct 1 st path Correct 2 nd path	A1 A1		Eg $A-1+B-4$ F-3+C-2+E-6
	Match A1, B4, C2, D5, E6, F3	B1	5	or A1, B4, C2, D6, E5, F3 or A3, B4, C2, D5, E6, F1 or A3, B4, C2, D6, E5, F1
	Total		7	
2(a)				
	2 12 17 18 5 13 2 12 17 18 5 13 2 5 12 17 18 13 2 5 12 17 18 13	M1 A1F B1		SCA, using pivots to create sublists Correct 2nd pass Consistent pivots
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	4	All correct
(b)	` /	B1	1 5	
	Total		5	

Q	Solution	Marks	Total	Comments
3(a)(i)	$EG \left(2.3 \right)$	M1		SCA, Kruskal's, 1 st 3 edges correct, must
	AB 2.5			be edges not lengths, and no cycle in
	IJ 2.9			solution
	$AC \mid 3.1 \mid$	B1		9 edges
	AD 3.2	A 1		AD 5th
	HJ 3.4	A1		AD 3th
	$GJ \mid 3.6 \mid$			
	BE 3.9			
	FI $\left[5.4\right]$	A1		All correct
(ii)	30.3	B1		
(iii)	$\begin{array}{c c} B & E & H \\ \hline D & G & \\ \hline C & F & I \end{array}$	M1 A1	7	Spanning tree with 10 vertices and 9 edges. All correct including labelling
(b)(i)	FI	B1		
(ii)	DA	B1	2	
	Total		9	

Q	Solution	Marks	Total	Comments
4(a)	103	B1	1	
(b)	Tour May be improved	E1 E1	2	
(c)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 m1 A1 A1 CSO	4	Tour, from A, visiting at least 4 other vertices, once only Visits all vertices Correct order If M0 scored then 102 scores SC2
(d)	$F \longrightarrow D$	M1		Spanning tree connecting <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i> AND 2 labelled edges from <i>A</i> (for both, edges, not lengths, can be either listed or shown in diagram) Correct ST
	= 77	A1 A1 CSO	4	Correct edges from <i>A</i> If M0 scored then 77 scores SC2
(e)	Min tour ≥ 77	E1	1	Allow their '77', provided '77'>75
	Total		12	

Q	Solution	Marks	Total	Comments
5(a)(i)	£ 21 _[19]	M1		SCA, using Dijkstra with 2 or more values
				at D or I AND one value only at both F
	11/4	A 1		and H.
	F 5 6 H 10 5	A1		Correct values at D
	CIS	A1		Correct values at I
	5 12 4 5	7 1 1		Correct varies at 1
	3	m1		2 values at E and J AND 3 values at B
	G K 7 9 B46 421			
	0 7 9 1514 7 421	A1		Correct values at <i>B</i> , <i>E</i> and <i>J</i>
	6 10 4 6 4	B1		Final value at A is 21
		D1		I mai varue at 71 is 21
	H 6 3 161 6 L 15	A1	7	All correct, including cancelling and
	5			boxing (condone omission of 0 at G)
	12			
	21 1 20			
(ii)	A B D K G			
(11)	$egin{array}{cccccccccccccccccccccccccccccccccccc$			Do NOT allow reverse order, but if
	J L I H G			correct in reverse order for all 3 then SC1
		$B1 \times 3$	3	
(b)(i)	$(Odds\ A, C, L, G)$			
	AC + LG = 27 $AL + CG = 26$	M1		These 3 sets of pairs stated
	AC + CC = 20 $AC + CL = 30$	$A1 \times 3$		One mark for each correct total
	Min 134 + 26	m1		134 + their min of 3 totals.
	= 160	A1	6	Must have scored first 5 marks.
		CSO		If M0 scored, then 160 scores SC2
(ii)	4	B1	1	
(11)	Total	DI	17	

Q			Solutio	n		Marks	Total	Comments
6(a)(i)	A	В	С	D	E	M1		A, B correct and value(s) for each of C, D
	36	16	2	22		. 1		and E
	16	4		32	4	A1		Correct 1st pass
		4	4	16	0	A1	3	All correct
	(Print)	4			0	Al	3	All correct
(ii)	A	В	C	D	E			
	11	7	1	-) (I		
	7			7	4	M1 A1		A, B correct and value(s) for each of C, D and E Correct 1st pass
		4	1	4				
	4	3			3	A1		Correct 2nd pass
		J	1	3	1	A1		Correct 3rd pass
	3	1		2	1	Al		Correct 5rd pass
	(Print)	1		3	0	A1	5	All correct
(b)	HCF (of	f A and	<i>B</i>)		oe Total	E1	1 9	

Q	Solution	Marks	Total	Comments
7(a)	$6x + 4y + 3z \ge 420$	B1		
	$6x + 6y + 4z \ge 480$ oe	B1		
	$6x + 4y + 4z \le 720$ oe	B1	3	
(b)(i)	(y=z)			
	$6x + 4y + 3y \ge 420 \Rightarrow 6x + 7y \ge 420$	B1		Must see this substitution
	$6x + 10y \ge 480 \Rightarrow 3x + 5y \ge 240 \text{oe}$			
	$6x + 8y \le 720 \Rightarrow 3x + 4y \le 360 \qquad \text{oe}$	B1	2	Both other inequalities correct, condone
				direct substitution into simplified versions
				of part (a)
(ii)				
(11)	y ↑ 120			
	120			Accuracy: All lines must be
	100			ruled, correct to within ½ square
				ВОТН
	80	B1		horizontally and vertically Correct at (0, 60) and (70, 0)
		B1		Correct at (0, 60) and (70, 0) Correct at (0, 48) and (80, 0)
	60	B1		Correct at (0, 90) and (120, 0)
		B1		FR labelled, MUST have scored
	40 FR			previous 3 marks
		2.54		Condone omission of shading on axes
	20 OL	M1 A1	6	OL, drawn, with gradient -0.8 or -1.25 Gradient -0.8
		Aı	O	Gradient –0.8
	0 20 40 60 80 100 120 x			
(iii)	(Max profit =) £480	B1		Including '£'
	120 gold, 0 silver, 0 bronze	B1	2	All 3 must be stated
	(Mars 1111 C1000	D1		To also 1'm + 602
(c)	(Max profit =) £1080 0 gold, 90 silver, 90 bronze	B1 B2	3	Including '£' If B0 scored then B1 for $x = 0$ and $y = 90$,
	o goid, 70 sirver, 70 dionize	D2	3	PI
	Total		16	
	TOTAL		75	

A-LEVEL **MATHEMATICS**

Decision 1 – MD01 Mark scheme

6360 June 2014

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
Е	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Mark	Total	Comment
1(a)	1 2 3 4 5 A 0 0 1 0 0 B 1 1 1 0 0 C 0 0 1 1 1 D 0 1 0 1 0 E 0 1 0 1 0	M1	2	5x5 matrix with some 0's, 1's oe (or transpose) This diagram (or transpose), including labelling.
(b)(i)	Ignore paths that do not lead to a complete match. For all paths, the order may start from 1 and/or 5. Initial path MUST have only 4 'terms' Correct 4 term path Correct pair of paths (order is only important if second path has 6 terms) $D-2+B-1$ and $E-4+C-5$ $D-2+B-1$ then $E-2+D-4+C-5$ $E-4+C-5$ then $D-4+E-2+B-1$	M1 A1		Or, D-4+C-5 and $E-2+B-1D-4+C-5$ then $E-4+D-2+B-1E-2+B-1$ then $D-2+E-4+C-5$
				If a candidate works on diagrams, then the marks can be earned, BUT only one path per diagram (2 paths on 1 diagram scores M0). The start vertex and path must be clear and correct to score M1. The start vertex and path on a second diagram must be clear and correct to score A1.
	Match - must be stated and not simply 'shown' on a diagram A3, B1, C5, D2, E4 or A3, B1, C5, D4, E2	В1	3	
(ii)	Match - must be stated and not simply 'shown' on a diagram Match A3, B1, C5, D4, E2 or A3, B1, C5, D2, E4	B1	1	
	Total		6	

Q	Solution	Mark	Total	Comment
2(a)(i)	4 1 2 3 (7) 5 6 D E F G H I S D 120 140 80 170 140 140 E 120 - 70 80 130 130 110	M1		Some (just) rows or (just) cols crossed out, with some values circled/highlighted
	F 140 70 - 90 190 85 90 G 80 80 90 - 110 100 100 H 170 130 190 110 - 140 150	A1		Any 6 values circled/highlighted/listed seen either in table or body of script
	1 170 130 190 119 1 140 130 1 140 130 (85) 100 140 60 S 140 110 90 100 150 60	A1		First 3 correct, EF or FE, EG or GE, GD or DG, identified AND E, F, G numbered (1, 2, 3 or (0), 1, 2)
				(if no numbering on table, accept order if clearly shown by a correct list)
		A1		All correct or fully correct transpose (numbering may be as first A mark, if no numbering on table, accept order if clearly shown by a correct list, condone omission of 7 at <i>H</i> . Condone row (or col) <i>H</i> not crossed out.)
		B1	5	Correct edges (not lengths), either listed or values circled/highlighted seen either in table or body of script
(ii)	485	B1	1	
(iii)	-			
	$D \downarrow F$	M1		ST with 7 vertices and 6 edges
	G	A1	2	Correct including labelling
	1 Z			
(b)(i)	H [†] IF (FI), IS (SI)	B1, B1		Must be in this order If only 1 edge given then 'last/2 nd last'
(ii)	IF (FI), GH(HG)	B1	3	must be clearly stated Must be in this order (SC1 if B0 scored in part (i) and (ii), and ONLY IS given for part(i) and GH for part (ii).)
	Total		11	

Q	Solution	Mark	Total	Comment
3 (a)(i)	A 0 16 B 44 37 36 29 H 28 F G H 28 E 76 94 61	M1 A1 m1 m1 A1 B1	6	Use of Dijkstra, 2+ values at <i>F</i> Values of 44, 37, 36 only at <i>F</i> 3 values at <i>I</i> 3 values at <i>J</i> All correct, including cancelling and boxing. (condone omission of 0 at <i>A</i>) Final value at <i>K</i> is 61 (diagram takes precedence over value in body of script) (Notation: accept correct alternative notation eg 3 'box' method etc) If working from <i>K</i> to <i>A</i> : M1 2 values at <i>F</i> A1 values of 34 and 26 at <i>F</i> m1 2 values at <i>A</i> m1 only one value at every other vertex A1 as above, B1 final value at <i>A</i> is 61
(ii)	ABEIK	B1	1	Or reverse Condone AB, BE, EI, IK
(b)	63 (mins) oe	B1	1	Condone AD, DE, EI, IK
(c)	64 (mins) oe ABFJK	B1 B1	2	Or reverse
	Total		10	

Q	Solution	Mark	Total	Comment
4(a)	AC + EG = (6 + 9.5) = 15.5 AE + CG = 11 + 12.5 or 23.5 AG + CE = (7 + 8) = 15	M1 A2,1,0		These 3 sets of pairs stated All 3 correct, 2 correct
	79.5 + their min total = 94.5	m1 A1 cso	5	PI by their final answer (if M0 scored then 94.5 scores SC2)
(b)(i)	2	B1		
(ii)	3	B1	2	
(c)(i)	79.5 + their min edge	M1		PI by their final answer (must have 6
	= 85.5	A1		'values' in part (a)) If M0 scored then 85.5 scores 2/2
(ii)	E,G	B1	3	
	Total		10	

Q	Solution	Mark	Total	Comment
5	FR 2 0 2 4 5 6 4 6 8 10 x			Accuracy: All lines must be ruled, correct to within ½ small square both horizontally and vertically, at 'key' vertices, stated below. Ignore objective lines in part (a)
(a)	x = 1, $y = 3$ and $x + y = 5x + y = 123x + 8y = 64Correct feasible region$	B1 B1 M1 A1 B1	5	x + y = 5, correct at $(0, 5)$ and $(5, 0)Correct at (4, 8) and (8, 4)Line with 'correct' gradient (-0.5 to -0.3)passing through (0, 8).Correct at (8, 5)F.R. (a pentagon) clearly identified and labelled, must have scored previous 4$
(b)	30, (9, 3)	B1, B1		If multiple vertices are listed then final answer must be clearly identified. For the second B1, the coordinates must be stated explicitly. (allow <i>x</i> =9, <i>y</i> =3 etc)
		•		
(ii)	29.6, (6.4, 5.6) oe	B1, B1		SC1 for 29 - 31, AND (6 - 7, 5 - 6)
(iii)	-15, (9, 3)	B1, B1	6	
	Total		11	

Q	Solution	Mark	Total	Comment
6(a)(i)	30	B1		
(ii)	20	B1	2	
(b)(i)	Quicker going via L oe	E1	1	<i>MLN</i> (= 236), allow 126 + 110
(ii)	932 (mins) isw	B1	1	
(iii)	MLNLBLELM	M1		Any correct 'expansion' eg MLN, NLB or
		A1	2	BLE
(iv)	Script takes precedence over working on table. MBLNEM or MBLNLEM 796 (mins)	M1 m1 A1 A1 cso	4	Any tour starting and finishing at <i>M</i> Visits all vertices Correct order If M0 scored, then 796 scores SC2 If a candidate works only on a table M1 for 4 or 5 values circled m1 for 5 values circled, one per row/col A1 for correct values circled and order shown A1 for 796
	Total		10	

Q	Solution	Mark	Total	Comment
7	$4x + 10y + 10z \le 240$	M1		One correct inequality, PI by correct simplified inequalities
	$7x + 14y + 14z \le 210$ $14x + 21y + 28z \le 420$	A1		All 3 correct,(PI by correct simplified inequalities)
	(Leading to) $2x + 5y + 5z \le 120 \text{ISW}$ $x + 2y + 2z \le 30 \text{ISW}$ $2x + 3y + 4z \le 60 \text{ISW}$	m1 A1		Correctly simplifying one inequality All correct
	$x > y + z \qquad \text{ISW}$ $y \ge z \qquad \text{ISW}$	B1 B1		OE, must have all coefficients as ± 1 OE, must have all coefficients as ± 1
	$y \ge \frac{15}{100}(x+y+z)$ (Leading to)	M1		OE (but not 15%)
	$17y \ge 3x + 3z \qquad \text{ISW}$	A1		Any correct rearrangement involving integer coefficients eg $17y-3x-3z \ge 0$
	Total		8	

Q	Solution	Mark	Total	Comment
8(a)(i)	If <i>x</i> is even, there would be three odds	M1		Or,
	Hence <i>x</i> is odd.	A1	2	Sum = $5x + 7$, must be even, M1 (so $5x$ must be odd), so x must be odd A1
(ii)	 x = 1 (if only seen in part (i), this mark can be awarded if a correct graph is given in part (ii)) 	B1		
	Graph clearly having 5 vertices and 5 or 6 edges Correct graph must clearly have 5 vertices, 6 edges and degree of vertices as	B1 B1	3	eg
(b)(i)	1, 2, 2, 3, 4 (Min =) 0 (Max =) 9	B1 B1	2	
(ii)	(the degrees of the vertices must be 0, 1, 29) There would be an odd number of odds Impossible	E1 E1	2	Or, If all different, then sum = 45 Impossible, as sum must be even Or, Degrees of 0 and 9 would occur, Impossible as '9' would connect to the '0'
	Total		9	

A-LEVEL Mathematics

Decision 1 – MD01 Mark scheme

6360 June 2015

Version/Stage: Version 1.0 : Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
−x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q1	Solution	Mark	Total	Comment
1	I			
	Path starting <i>D</i> -2+ <i>A</i> or 5- <i>A</i> +2	M1		Paths should be listed, but allow on
	Path starting <i>E</i> -3+ <i>B</i> or 6- <i>F</i> +4	M1		diagram provided one path per
				diagram and start/end clearly labelled.
	D-2+A-5	A1		Or reverse
	<i>E</i> -3+ <i>B</i> -4+ <i>F</i> -6	A 1		Or reverse
	Or			
	II			
	Path starting <i>D</i> -2+ <i>A</i> or 6- <i>F</i> +4	(M1)		
	followed by	()		
	Path starting <i>E</i> -3+ <i>C</i> or 5- <i>A</i> +1	(M1)		
		` ,		
	D-2+A-1+C-3+B-4+F-6	(A1)		Or reverse
	followed by			
	E-3+C-1+A-5	(A1)		Or reverse
	0			
	Or			
	Doth starting F3+ Bar F 4+2	/R/14\		
	Path starting <i>E</i> -3+ <i>B</i> or 5- <i>A</i> +2 followed by	(M1)		
	Path starting <i>D</i> -2+ <i>B</i> or 6- <i>F</i> +4	(M1)		
	Fall Starting D-2+D of 0-7+4	(1411)		
	E-3+B-2+A-5	(A1)		Or reverse
	followed by	(,,,		011010100
	D-2+B-4+F-6	(A1)		Or reverse
		` '		
	Matching A5, B4, C1, D2, E3, F6	B1		Must be listed, not on a diagram
				-
Notes	Total		5	

Notes:

For **II and III** the paths MUST be in the order stated. If order is reversed then the max mark is M0A0M1A1 Watch for alternative, but correct, notation (needs to be clear).

If using a diagram, two paths indicated on one diagram will score M0.

Use of one long path, usually by attempting to combine two shorter ones, can earn a max of M1 A0 M0.

	Q2	Solution	Mark	Total	Comment
2	(a) (i)	AC	M1		Use of Prim's, first three edges (not
		AD			numbers) correct
		CE	B1		7 different edges
		EH			0 () 1: 1: 45.00
		HG	A 1		Correct up to and including AB 6th
		AB DF	A 1	4	All correct
		DF	AT	4	All correct
		$A \longrightarrow D$ •G			
	(ii)				
	(,		M1		Spanning tree, no cycles, 8 vertices, 7
		C F			edges
			A 1	2	Correct, including labels but ignore
					any lengths
		₿ E H			
	(iii)	£1170	B1	1	Must include units.
	(,		D 1		Wast include units.
	(b)	Replace <i>CE</i> with <i>DG</i>	M1		PI
	,				
		New cost £1200			
		or (value of their "£1170" + £30)	A1F	2	Must include units.
		Total		9	

Notes:

For a(i), accept a diagram with the order of selection of edges clearly indicated. For (a)(iii) and (b) penalise omission of units in the first instance only.

Q3	Solution	Mark	Total	Comment
3a	15	B1	1	
b	8	B1	1	
С	1	B1	1	
d	$\frac{n(n-1)}{2} \text{with } n = 16$ Or $\frac{n(n+1)}{2} \text{with } n = 15$	M1		PI (clear attempt to sum 1 st 15 integers)
	or 15 + 14 ++ 1 120	A1	2	NMS 120 scores 2/2
	Total		5	

Q4	Solution	Mark	Total	Comment
4 (a) (i)	D 13 12 6 7 2 6 10 9 6 1 6 2 2 6 14 6 2 2 4 2 6 1 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	M1 A1 m1 A1	5	Use of Dijkstra; two values at <i>E</i> and one at each of <i>G</i> and <i>H</i> Correct values only at <i>E</i> 2 values at each of <i>D</i> , <i>F</i> and <i>I</i> . Completely correct including all crossing out and boxing 19 at <i>J</i> . If stated in text as well, diagram takes precedence.
(ii)	Route ABEHFJ or reverse	B1	1	Must be listed, not just marked on diagram.
(b)	12 + 19 + 3 (= 34) 11.04 (a.m.)	M1 A1F	2	Their final values for <i>AD</i> and <i>AJ</i> + 3 11.04 unsupported scores 2/2
	Total		8	

Q5	Solution	Mark	Total	Comment
5 (a)	<i>AB</i> + <i>CG</i> = (50 + 240) = 290 <i>AC</i> + <i>BG</i> = (100 + 230) = 330	M1		These 3 pairs stated including the intention to add
	AG+BC = (210 + 70) = 280	A2,1		3 correct totals, 2 correct totals
	Solution = 1400 + their min total = 1680 m	m1 A1	5	Of three totals PI CSO Must include units
(b)(i) (ii)	3 3	B1 B1	2	
	Total		7	

Notes:

For 5(a), SC if M0 scored then 1680 m scores 2/5. Must include units.

For 5(a), SC if M0 scored then 1680 scores 1/5 (no units)

Q	Solution								Total	Comment
6 (a)			1	1	1		, ,			
		Α	В	С	D	Ε	F			
	А	-	7	6	5	7	10			
	В	7	-	5	9	14	12			
	С	6	5	-	4	10	8	B2,1,0	2	- 1 each independent error
	D	5	9	4	-	6	5	52,1,0	_	r cash independent enter
	Ε	7	14	10	6	=	10			
	F	10	12	8	5	10	-			
(b) (i) (ii)	(7+10- It is a							B1 E1	1 1	A possible solution to the problem, OE
(c)	DCBA		7 . 40 .		00			M1 A1		Hamiltonian cycle from D Correct order
	(= 4+5	+/+ <i>/</i> 	′+10+	-5 =)	38			B1	3	Correct length
(d)	A	A - 7	7 -	C 6 5	D 5 9	7 14	10 12	- M1		6 different edges, not just numbers, of
	C D E	6 5 7	5 9 14	10 8	6 5	6 - 10	8 5 10			which exactly 2 are from A (seen in diagram, listed or in table)
	<i>B</i> ●	!	<u>с</u>		D •			A1		Correct MST (seen in diagram, listed or in table)
	C MST I Edges							A1		Correct edges from A (listed, in table or seen in diagram and clearly identified)
	(5+4+6	6+5)+	+(6+5) = 3	1			B1	4	
(e)	31 < T	' ≤ 38	3					B1F	1	Their "31" < T ≤ their best of 2 ub provided lb ≤ ub Condone their "31" ≤ T ≤ their "38"
	Total								12	

Q7	Solution	Mark	Total	Comment
7 (a)	(<i>m</i> =) 4 or 5	B1		Either value, with no incorrect values, Or both correct and ONE other value.
		B1	2	Both values correct and no others
(b)	(n =) 3, 4, 5 or 6	B1		Three correct values and no incorrect values or all four correct with at most
		B1	2	one extra value All correct with no extra values
(c)				
		B1		Graph is simple and connected, and has 5 vertices, each with even degree.
		B1	2	Graph is isomorphic to one of the two shown.
	Total		6	
Notes: (a	a) An answer of 3, 4, 5, 6 scores B0 as 2	correct a		prrect answers

	Q8				Solu	tion			Mark	Total	Comment
8	(a)		N	Α	В	С	D	Print			
			5								
				1							
					1						
						0					
						1	2				
							2	1			For all marks:
			4					_			for each column/variable, condone 0s
				1							at the beginning of sequences and any
					2						repeated values
						2					
							3	1	M1		For N: sequence "5,4,3"
			3					1			, , ,
			J	2							
					3				A 1		For N: sequence "5,4,3,2,1,0"
						4					
							5				
			2					2	A1		For B: sequence "1,2,3,5,8" and
			2	3					***		for D: sequence "2,3,5,8,13"
				3	5						
						7					
							8				
								3			
			1	_							
				5	8						
					O	12					
							13		B1		All prints seen and correct
								5	ы		All prints seen and correct
			0								
								12	A1	5	Complete correct solution including all
											prints seen
(b)	1	√is u	sed a	s a st	opping	g cond	lition	E1	1	OE but not simply "a counter"
								Total		6	
1								ı Ulal		U	

Q9	Solution	Mark	Total	Comment	
9 (a)	$400x + 400y + 600z \le 130000$	B1		OE	
	$(2x+2y+3z \le 650)$ $200x+500y+200z \le 70000$ $(2x+5y+2z \le 700)$	B1		OE	
	$(2x+3y+2z \le 700)$ $400x+100y+200z \le 72000$ $(4x+y+2z \le 720)$	B1		OE	
	$(4x+y+2z \le 720)$ $z \ge 75$	B1	4	OE but z terms must be collected	
(b)	Substitute $z = x + y$ $2x + 2y + 3z \le 650 \Rightarrow 5x + 5y \le 650$ $\Rightarrow x + y \le 130$ $2x + 5y + 2z \le 700 \Rightarrow 4x + 7y \le 700$ $4x + y + 2z \le 720 \Rightarrow 6x + 3y \le 720$	M1		Clear substitution of $z = x + y$ into one of the first three inequalities	
	$\Rightarrow 2x + y \le 240$ $z \ge 75 \Rightarrow x + y \ge 75$	A 1	2	All correct. AG. (with middle line in 1 st and 3 rd inequalities)	
(c)	120 100 100 100 100 100 100 100 100 100	B1 B1 B1 B1	5	All points correct to within ±½ a small square vertically and horizontally and lines ruled Line through (130,0) and (0,130) Line through (175,0) and (0,100) Line through (120,0) and (80,80) Line through (75,0) and (0,75) Feasible region correct and labelled, dep. on first B4	
(d)	(P =) 50x + 100y + 150z (P =) 200x + 250y	M1 A1	2	PI or seen	
(e) (i)	Either OL drawn with gradient -0.8	M1	2	Condone gradient of $-\frac{a}{b}$ or $-\frac{b}{a}$ from	
				their final answer for part (d) $ax + by$	
	<i>x</i> = 70, <i>y</i> = 60	A1 CSO		Dependent on gradient of -0.8	
	or (0, 100) $P = £25000$ (70, 60) $P = £29000$ (110, 20) $P = £27000$	(M1)		SCA Attempt to identify and <u>list</u> at least the four relevant vertices (OE from <u>their</u> hexagon) and attempt at	
	(120, 0) $P = £24000so max at x = 70, y = 60$	(A1 CSO)	2	finding some values of <i>P</i> . Must be clearly chosen from these four correct values	
(ii)	P = £29000	D4		Including £	
	70 tonnes Basic, 60 (tonnes) Premium, 130 (tonnes) Supreme	B1 B1	2	All three correct, including units. (Not just $x = 70$, $y = 60$ and $z = 130$.)	
	Total		17		